More Arrays and the `setAttitudeTarget` Function
In this tutorial you will:

- Practice using arrays in programming
- Learn about a new SPHERES control function:

 `api.setAttitudeTarget`—allows you to rotate the satellite to face in whatever direction you want.
What makes a SPHERES move?

- A thruster is used to propel (move) the SPHERES satellite in a certain direction.
- There are 12 thrusters on each SPHERES satellite to help it move in 12 different directions.
 - 3 of the 12 thrusters are visible in the photo to the right.
- How does this work?
 - A tank of carbon dioxide (CO₂) gas is attached to the SPHERES satellite.
 - Each thruster releases CO₂ from the SPHERES satellite, creating a force on the satellite in the opposite direction.
- Multiple thrusters on different sides are activated to rotate the satellite to a specified pointing direction.
Are you ready to write a program to rotate a satellite (control satellite attitude)?

When you set the **position** of the SPHERES satellite, you created an array of 3 values \(\{x,y,z\}\).

To rotate (control the **attitude**) of the SPHERES satellite you will also need an array of 3 values \(\{Nx,Ny,Nz\}\).

Remember what you learned about arrays before?

Okay, let’s get started
Create a New Project and a New Variable

- Select light blue “ZR IDE” SPHERES icon on top ribbon
- Select “New Project”
 - Project Name: **Project 2**
 - Game: FreeMode
 - Editor: Text Editor
- Declare an array called “attitude” to store the attitude of the SPHERES satellite
 - Go to the area before void init() to declare the array.
 - Recall that the type will be float, and that the length will be 3 variables.

```c
// Declare any variables shared between main functions
float attitude[3];

void init()
{
  // This function is called once when the program starts
  // IMPORTANT: make sure to set attitude to reasonable values
  // Do not assume variables will have sensible values by default
}

void loop()
{
  // This function is called once per second

  // Do something with attitude here...
}
```
Assign Values to Your Array

• Go to void init() and assign every element of the array a value corresponding to the coordinates (1,0,0) (Remember, the first element has the index 0, not 1).

• Don’t forget the semicolons!

```c
//Declare any variables shared between functions here
float attitude[3];

void init(){
  //This function is called once when your code is first loaded
  //IMPORTANT: make sure to set any variables that need an initial value
  //Do not assume variables will be set to 0 automatically!
  attitude[0]=1;
  attitude[1]=0;
  attitude[2]=0;
}

void loop(){
  //This function is called once per second. Use it to control
}
• The SPHERES Control Function `setAttitudeTarget` allows you to set the direction in which the satellite’s Velcro (-X) face points.
• Attitude specifies a pointing **direction** \((N_x, N_y, N_z)\), not a pointing **location**.
• Commanding an attitude target makes the satellite fire thrusters to rotate to the target direction, then stop.
Add setAttitudeTarget Function

- The setAttitudeTarget control can be applied in the same manner as the setPositionTarget control.
- Go to void loop(), and put in `api.setAttitudeTarget`. Again, to designate which array the control will be applied to, put `attitude` within parenthesis and end with a semicolon.

```c
//Declare any variables shared between functions here
float attitude[3];

void init()
{
 //This function is called once when your code is first loaded
 //IMPORTANT: make sure to set any variables that need an initialization
 //Do not assume variables will be set to 0 automatically!
 attitude[0]=1;
 attitude[1]=0;
 attitude[2]=0;
}

void loop()
{
 //This function is called once per second. Use it to control
 api.setAttitudeTarget(attitude);
}
```
Compile, Simulate

- Compile, Simulate
- In the Simulation window:
  - Change “Maximum Time” setting to 20 seconds
  - Click “Simulate”
  - A “Running” window pop up while the simulation is being constructed
View Simulation

• Before playing the simulation
  • Click on the zoom-in tool at the bottom of the screen 10 times
• Start the simulation
  • The visible face on the SPHERES satellite will change as the satellite rotates to point in the positive x direction.
  • Look at the scoring box (top-left corner of the screen with blue label) which provides information about the blue SPHERES satellite:
    • Started at Ny = 1.00 (pointing in positive y direction)
    • Ended at Nx = 1.00 (pointing in positive x direction)
Modify Program, Compile & Simulate

- Close the Simulation Window
- Return to the Text Editor page
- Next try pointing in the negative x direction
- Change: “attitude[0] = 1” to: “attitude[0] = -1”
- Important Notes:
  For these exercises, point the satellite by setting only one of the values [0], [1], [2] to +/-1 and leave the rest set to 0 as shown in the table.

- “Quick Compile” and “Simulate” as before
- “Run”

```c
1 //Declare any variables shared between functions here
2 float attitude[3];
3 void init()
4 {
5 //This function is called once when your code is first loaded
6 //IMPORTANT: make sure to set any variables that need an initial value in this function!
7 //Do not assume variables will be set to 0 automatically!
8 attitude[0]=-1;
9 attitude[1]=0;
10 attitude[2]=0;
11 }
12 void loop()
13 {
14 //This function is called once per second. Use it to control the satellite.
15 api.setAttitudeTarget(attitude);
16 }
```

### To point the satellite in the following directions:

<table>
<thead>
<tr>
<th>set [0]</th>
<th>+/- x direction</th>
<th>+/- y direction</th>
<th>+/- z direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>set [1]</td>
<td>0</td>
<td>+/-1</td>
<td>0</td>
</tr>
<tr>
<td>set [2]</td>
<td>0</td>
<td>0</td>
<td>+/-1</td>
</tr>
</tbody>
</table>
Review

- Congratulations!
- You are getting good at programming with arrays!
- You know how to program a SPHERES satellite to rotate and point in a specific direction!
- Note: the tutorial “setAttitudeTarget revisited” teaches rotation in 3 dimensions.