For Loops
(Project 8)
In this tutorial you will:

• Use a **for loop** to repeat an action a set number of times
• Find the position of the other satellite
• Program your satellite to move toward the other satellite, but stop halfway
Create a new project

• Create a new project
• Name it “Project8” and choose “FreeMode” and “Graphical Editor”
• Create the following variables and arrays on the init page:
 – int counter
 • Set initial value to 0
 – float my_state[12]
 – float other_state[12]
 – float target[3]

![Global variables chart]

leave initial values blank
In this tutorial, you will move your blue satellite half the distance toward the red satellite.

• First, you will use two API functions, `getMyZRState` and `getOtherZRState`, to find the starting positions of the two satellites.
• You will find the coordinates of the midpoint between the satellites.
• You will move to that position using `setPositionTarget`.
getMyZRState and getOtherZRState

- **getMyZRState** finds the position of your satellite (blue) and writes it to an array.
- The array must consist of 12 floats. The first three members (index numbers 0 to 2) contain the x, y, and z coordinates of your current position.
- The other numbers in the 12-member array contain other information about your current state (for example, your current velocity) that you will not use in this tutorial.
- **getOtherZRState** does the same thing, but it sets the array to the state of the other satellite (red.)

Array members:

- xxx[0] : x coordinate
- xxx[1] : y coordinate
- xxx[2] : z coordinate
- xxx[3] to xxx[11]: other things
Set up counter

• Go to the “Logic” accordion
 – Drag an “if - then” block into the loop
 – Drag an “__==__” block onto the “if” end of this block.

• Go to the Variables accordion
 – Drag a pink variable block (“--Select--”) into the first empty space

• Go to the math accordion
 – Drag a number block into the second empty space. (Set to 0)

• Any calculations put in this “if-then statement” will happen only once, at the start when counter is 0. This will be important to keep your target from changing as your position changes.

• Finally, add counter = counter + 1 outside the “if-then” block as shown.
Set `my_state` and `other_state`

- Now you will find the positions of the two satellites so you can calculate your target.
- Go to the SPHERES Controls accordion and drag two `getMyZRState` blocks into the if-then block.
- Change the first drop-down menu on the second block to “Other”
- Change the drop-down menus of `getMyZRState` to `my_state` and `getOtherZRState` to `other_state`.
- The arrays `my_state` and `other_state` have now been set to the states of the two satellites.
Calculating the target coordinates

- The target is the midpoint between the two spheres.
- We can find the coordinates of the midpoint by taking the average of each coordinate as shown.

- Example, the x coordinate is \(\frac{x_1 + x_2}{2} \)
- Using a for loop makes this calculation simpler.
Using **for loops**

- Go to the Loops accordion and drag a “for index1 from 0 to 9” block inside the if-then block below `getOtherZRState`.
- Change the number blocks to “0 to 2” as shown.
- Everything inside the “for loop” block will be executed three times.
- The statement automatically creates a new `int` variable called `index1` that increases like a counter each time (shown in the following slides).
For loop flowchart

- The **for loop** is a loop inside the main SPHERES loop as shown in the flowchart.

- The variable **index1** is highlighted.

- Do you see that the **for loop** in this example executes three times inside the main loop?

```
for loop

Counter=0?
  true
  \text{"getMyZRSstate"}
  \text{"getOtherZRSstate"}
false
  \text{Go to Target}

Index 1=0 at start (for integers 0 to 2)

Index 1 <=2?
  true
  First time through Index1=0
  Calculate target [0]
  Index1=Index1+1
false
  2nd time through Index1=1
  Calculate target [1]
  Index1=Index1+1

3rd time through Index1=2
  Calculate target [2]
  Index1=Index1+1
```

```
target[0] = \text{x coordinate}
target[1] = \text{y coordinate}
target[2] = \text{z coordinate}
```
Calculating target position

- Go to the Variables accordion
 - Drag a purple array “Select [0]=0” block into the for loop.
 - Change the drop-down menu to target.

- Drag a pink variable (“--Select--”) block into the first empty space and change its drop-down menu to index1.

- Because index1 goes from 0 to 2, the first time the loop will set target[0] (the x coordinate), then target[1] (y), then target[2] (z.)
Calculating target position (cont.)

- Go to the Math accordion and drag a "__/__" block onto the 0 in the block you just added. (toggled from the "__+__" block)
- Drag a "__+__" block into the first empty space in the block (the numerator.)
- Drag a number block into the second empty space set to 2.
- Drag a --Select-- [0] block from the Variables accordion onto each side of the "__+__" block.
- Change to: my_state [0] + other_state [0]
Now drag two pink variable ("—Select--") blocks onto the 0 in the index of the `my_state[0]` and `other_state[0]` blocks and change them to `index1`.

Do you see how this line of code sets each coordinate of `target` to the average of `my_state` and `other_state`?

Finally, outside the if statement at the very end of the loop, add `setPositionTarget(target)` (shown on next slide).
Your final program

- Before you simulate: See instructions on the next 2 pages including!
 - Warning
 - Changing the starting coordinates in the simulation settings window
WARNING!

- You must always be careful when using **for loops** to set arrays.
- For example, if you change the 2 in the **for loop** block to a 3, the program will try to set `target[3]` to a value.
- But `target[3]` does not exist. *(target [0], target [1], target [2])*
- This can cause serious problems.
- Make sure you are only putting values into array members that actually exist!

![Diagram](image-url)

VERY BAD!
• Compile
• Simulate
 - Set Maximum Time to 60 seconds
 - Set the starting coordinates of **Satellite 1**:
 - \(x = 0.3, \ y = 1, \ z = -0.8 \)
 - Set the starting coordinates of **Satellite 2**:
 - \(x = 0.5, \ y = -0.3, \ z = 0.3 \)
• View simulation
• Change the starting coordinates to your own values and try it again.
```c
void loop() {
    if (counter == 0) {
        api.getMyZRState(my_state);
        api.getOtherZRState(other_state);
        for (int index1 = 0; index1 <= 2; index1++) {
            target[index1] = (my_state[index1] + other_state[index1]) / 2;
        }
        counter = counter + 1;
        api.setPositionTarget(target);
    }
}
```
Congratulations!

- You have found the positions of the satellites in your code.
- You have used a **for loop** to carry out repeated calculations.
- You have programmed one satellite to move halfway toward the other one.