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Class Documentation

ZeroRoboticsGame Class Reference
The class of the game object that you will use.

Public Member Functions

¢ float getFuelRemaining ()
* void sendMessage (unsigned char inputMsg)
* unsigned char receiveMessage ()
*  bool isFacingOther ()
Check if the camera is pointed towards the other satellite.

¢ float takePic ()
Attempts to take a picture in the current position.

¢ float getPicPoints ()
Determines how many points a picture would give if taken immediately.

¢ int getMemoryFilled () const
Returns how many memory slots are currently in use.

* int getMemorySize ()
Returns the total number of memory slots available to the satellite.

¢ float uploadPics (void)
Attempts to upload pictures taken to Earth.

*  bool isCameraOn ()
Makes sure the camera is on.

¢ float getEnergy ()
Tells how much energy the player has.



float getOtherEnergy ()
Tells how much energy the opponent has, at a cost of 0 energy.

bool posInLight (float pos[])
Returns true if the given coordinate is in the light zone.
bool posInDark (float pos[])

Returns true if the given coordinate is in the dark zone.

bool posInGrey (float pos[])
Returns true if the given coordinate is in a grey zone.

int posInArea (float pos[])
Returns 1 if the given coordinate is in the light, -1 if in the dark, and 0 otherwise.

float getLightInterfacePosition ()
Determines where the center of the grey zone at the tail end of the light zone is.

float getDarkGreyBoundary ()
Determines where the boundary between the dark zone and the grey zone is.

float getLightGreyBoundary ()
Determines where the boundary between the light zone and the grey zone is.

float getLightSwitchTime ()
Determines how long until the light and dark zones next switch (2D/3D).

int getNumItem ()
Returns the number of total items in play, whether they have been picked up yet or not.

bool useMirror ()
Uses a held mirror item.

int getMirrorTimeRemaining ()
Returns the amount of time left on your current mirror.

int getNumMirrorsHeld ()
Returns the number of mirrors currently held and available for use.

void getItemLoc (float pos[], int itemID)
Copies the location of a given item into the given array.

int hasItem (int itemID)
Tells who has a given item.

int getItemType (int itemID)
Returns what the item does.

float getScore ()
Returns the player's current score.

float getOtherScore ()
Returns the opponent's current score.

int getCurrentTime ()
Returns the time.

ZeroRoboticsGame (ZeroRoboticsGameImpl &impl, ZeroRoboticsAPIImpl &apilmpl)
Constructor for the game. The provided references should be singleton instances.

Member Function Documentation

int ZeroRoboticsGame::getCurrentTime ()

Returns the time.



float ZeroRoboticsGame::getDarkGreyBoundary ()

Determines where the boundary between the dark zone and the grey zone is.
Returns:
The y-coordinate of the plane between the dark zone and the grey zone.

float ZeroRoboticsGame::getEnergy ()

Tells how much energy the player has.
Returns:
Amount of energy the player satellite currently has.

float ZeroRoboticsGame::getFuelRemaining ()
Tells the player how much fuel remains.

Returns:
float indicating how many seconds of fuel remain.

void ZeroRoboticsGame::getltemLoc (float posl], int itemID)

Copies the location of a given item into the given array.

Parameters:
pos A pointer to an array of size 3 which will be overwritten by the item location.
itemID The integer identifier of a given item.

int ZeroRoboticsGame::getltemType (int itemID)

Returns what the item does.
Possible Item Types:

e ITEM_TYPE_ADD_SCORE
e ITEM_TYPE_ADD_ENERGY
e ITEM_TYPE_MIRROR

Parameters:

| itemID | The integer identifier of a given item.

Returns:
The corresponding item type to the given identifier.

float ZeroRoboticsGame::getLightGreyBoundary ()

Determines where the boundary between the light zone and the grey zone is.

Returns:
The y-coordinate of the plane between the light zone and the grey zone.



float ZeroRoboticsGame::getLightinterfacePosition ()

Determines where the center of the grey zone at the tail end of the light zone is.

The tail end is at the lower Y-coordinate of the light zone, disregarding any portion that has
wrapped around.

Returns:
The y-coordinate of the light interface plane.

float ZeroRoboticsGame::getLightSwitchTime ()

Determines how long until the light and dark zones next switch (2D/3D).

Returns:
Number of seconds until the light switches.

int ZeroRoboticsGame::getMemoryFilled () const

Returns how many memory slots are currently in use.

Returns:
The number of memory slots used.

int ZeroRoboticsGame::getMemorySize ()

Returns the total number of memory slots available to the satellite.

This includes both used and unused slots.

Returns:
Number of memory slots available.

int ZeroRoboticsGame::getMirrorTimeRemaining ()

Returns the amount of time left on your current mirror.

Returns:
remaining time with a mirror up, zero if no mirror is up.

int ZeroRoboticsGame::getNumitem ()

Returns the number of total items in play, whether they have been picked up yet or not.

Returns:
Number of total items.

int ZeroRoboticsGame::getNumMirrorsHeld ()

Returns the number of mirrors currently held and available for use.



Returns:
number of mirrors held by the player.

float ZeroRoboticsGame::getOtherEnergy ()

Tells how much energy the opponent has, at a cost of 0 energy.

Returns:
Amount of energy the opponent satellite currently has.

float ZeroRoboticsGame::getOtherScore ()
Returns the opponent's current score.

float ZeroRoboticsGame::getPicPoints ()

Determines how many points a picture would give if taken immediately.

Does not actually take a picture. Costs 0.1 energy.

Returns:
The amount of points that the picture is worth.

float ZeroRoboticsGame::getScore ()

Returns the player's current score.

Returns:
Player satellite score.

int ZeroRoboticsGame::hasltem (int itemID)

Tells who has a given item.

Parameters:

| itemID | The integer identifier of a given item.

Returns:
0 if you have picked up the specified item, 1 if the other player has, or -1 if no one has.

ZeroRoboticsGame & ZeroRoboticsGame::instance () [static]

Retrieves the singleton instance of the game API. Users are not allowed to construct a game
instance, so the API must be retrieved through this interface.

Returns:
singleton of the game API

bool ZeroRoboticsGame::isCameraOn ()



Makes sure the camera is on.

Returns:
true if the camera is usable, false if not.

bool ZeroRoboticsGame::isFacingOther ()

Check if the camera is pointed towards the other satellite.

Returns:
true if the camera is facing the other satellite, false otherwise.

int ZeroRoboticsGame::posinArea (float pos[])

Returns 1 if the given coordinate is in the light, -1 if in the dark, and O otherwise.

Parameters:

| pos | An array of three floats in (x, y, z) order.

Returns:
1 if the given coordinate is in the light, -1 if in the dark, and O else.

bool ZeroRoboticsGame::posinDark (float pos[])

Returns true if the given coordinate is in the dark zone.

Parameters:

[ pos | An array of three floats in (X, y, z) order.

Returns:
true if the coordinate is in dark, false else.

bool ZeroRoboticsGame::posinGrey (float pos[])

Returns true if the given coordinate is in a grey zone.

Parameters:

| pos | An array of three floats in (x, y, z) order.

Returns:
true if the coordinate is in grey, false else.

bool ZeroRoboticsGame::posinLight (float pos[])

Returns true if the given coordinate is in the light zone.

Parameters:

| pos | An array of three floats in (x, y, z) order.




Returns:
true if the coordinate is in light, false else.

unsigned char ZeroRoboticsGame::receiveMessage ()
Recieve value from 0-255 from other satellite.

Returns:
An unsigned char containing a value from 0-255.

void ZeroRoboticsGame::sendMessage (unsigned char inputMsg)
Send a value from 0-255 to the other satellite.

Parameters:

| inputMsg | Unsigned Char to be sent to other satellite.

float ZeroRoboticsGame::takePic ()

Attempts to take a picture in the current position.

The camera will be disabled for 3 seconds after an attempt, whether successful or not. Costs
1.0 energy.

Returns:
The amount of points that the picture taken is worth.

float ZeroRoboticsGame::uploadPics (void )

Attempts to upload pictures taken to Earth.

Will fail if not facing Earth (3D/Alliance). Disables camera for three seconds upon sucessful
upload. Costs 1.0 energy.

Returns:
The total score over the course of the game so far.

bool ZeroRoboticsGame::useMirror ()

Uses a held mirror item.

Returns:
true if the item existed and was used, false otherwise.

File Documentation

Constants.h File Reference
A list of constants used in the ZR program.

Defines

e #define ZR3D
e f#define SHOW_GAME_TRACE



#define GAME_TIME 0
The time at game start.

#define VEL_X 3
The index for the beginning of the velocity array inside of ZRState.

#define MAX_GAME_TIME 180
Length of the whole game in seconds.

#define MAX_FACING_ANGLE 0.968912f
Cosine of the angle at which pictures may be taken/uploaded.

#define UPLOAD_ANG_VEL 0.05f
The maximum speed at which pictures can be uploaded in rads/s, which is roughly equal to 2.8 deg/s.
This is calculated by taking the absolute value of the magnitude of the attitude rate vector.

#define ITEM_TYPE_ADD_SCORE 0
The type identifier for a score item.

#define ITEM_TYPE_ADD_ENERGY 1
The type identifier for an energy item.

#define ITEM_TYPE_MIRROR 2
The type identifier for a mirror.

#define ITEM_SCORE 1.5f
The added score given by a score item.

#define ITEM_ENERGY MAX_ENERGY
The added energy given by an energy item.

#define ITEM_MIRROR_DURATION 24

The length a mirror lasts once activated.

#define NUM_ITEMS 9
The number of items in the game.

#define STARTING_MIRRORS 0
The number of mirrors each sphere starts with.

#define MP_SPEED 0.01f
The maximum speed at which an item may be picked up.

#define MP_RADIUS 0.05f
The maximum distance from which an item may be picked up.

#define MP_ROTATION_ANGLE 0.707106f

(rad) Rotation of satellite needed to pick up item (cos(90/2))

#define MP_EMPTY O0xOfff

#define LIGHT_SWITCH_PERIOD 60

The light switches this number of seconds after the first flip in the 2D/3D versions of the game.

#define LIGHT_SPEED .025f
The light moves at this speed (in m/s) during the Alliance portion of the game.

#define LIGHT_WIDTH .8
The width of the area that is not dark. Note that this includes the grey zone.

#define LIGHT_GREY_WIDTH 2

The width of the grey zone in the 2D/3D versions. The width of each grey zone in Alliance is
LIGHT _GREY_WIDTH/2.

#define DISABLE_CAMERA_TIME 3
The camera is disabled for this many seconds after taking and uploading pictures.

#define CAMERA_DEFAULT_MEMORY 2
The number of memory slots an unmodified camera has.

#define CAMERA_MAX_MEMORY 4



The number of memory slots the camera may have at a maximum.

¢ #define PHOTO_MIN_DISTANCE 0.5
The minimum distance the sphere may be from the target of its photograph.
¢  #define MIN_FUEL(a,b) ((a<b)?b:a)
¢ #define MAX_FUEL(c,d) ((c<d)?c:d)
¢ #define PROP_ALLOWED_SECONDS 60.0f
Total time in thruster-seconds allowed per user. Full tank ~500 seconds.
¢ #define MAX_ENERGY 5.0f
Energy capacity.
¢ #define STARTING_ENERGY MAX_ENERGY
Starting energy.

¢ #define ENERGY_GAIN_RATE 0.5f
Energy gained per second.

¢ #define ENERGY_COST_TAKE_PICTURE 1.0f
The energy cost to take a picture.

¢ #define ENERGY_COST_GET_OTHER_ENERGY 0.0f
The energy cost to determine how much energy your opponent has.

¢ #define ENERGY_COST_GET_PIC_POINTS 0.1f
The energy cost to determine how many points taking a picture right now would be worth, should you
choose to take it.

¢ #define ENERGY_COST_UPLOAD_PICTURES 1.0f
The energy cost to upload pictures.

¢ #define ENERGY_COST_THRUSTERS (.001f)*(.3f)
The energy cost to use one thousandth of a second of fuel.

¢ #define OFFSIDES_PENALTY .02*PROP_ALLOWED_SECONDS
¢  #define OOBgain 10.0f

¢ #define DRAG 1000.0f

¢ #define START_SCORE 0.0f

Your score upon starting the game.

¢  #define ZONE_pX 0.64f
The highest X coordinate in bounds.

¢ #define ZONE_pY 0.80f
The highest Y coordinate in bounds.

*  #define ZONE_pZ 0.64f
The highest Z coordinate in bounds.

* #define ZONE_nX -ZONE_pX

The lowest X coordinate in bounds.

¢ #define ZONE_nY -ZONE_pY
The lowest Y coordinate in bounds.

¢ #define ZONE_nZ -ZONE_pZ
The lowest Z coordinate in bounds.

Variables

¢ const float EARTH [3] = {0.0f, 0.0f, 1.0f}
Contains the attitude towards Earth.

¢ const float ITEM_LOC [NUM_ITEMS]([3]
Array that outlines the locations of each item.

e constint ITEM_TYPES [NUM_ITEMS]



Array that outlines the types of each item.

¢ const float limits [3] = {ZONE_pX,ZONE_pY,ZONE_pZ}
The limits of the interaction zone.

Detailed Description
A list of constants used in the ZR program.

Definition in file Constants.h.

Define Documentation
#define CAMERA_DEFAULT_MEMORY 2
The number of memory slots an unmodified camera has.
#define CAMERA_MAX_MEMORY 4
The number of memory slots the camera may have at a maximum.
#define DISABLE_CAMERA_TIME 3
The camera is disabled for this many seconds after taking and uploading pictures.
#define DRAG 1000.0f

#define ENERGY_COST_GET_OTHER_ENERGY 0.0f

The energy cost to determine how much energy your opponent has.

#define ENERGY_COST_GET_PIC_POINTS 0.1f

The energy cost to determine how many points taking a picture right now would be worth, should you
choose to take it.

#define ENERGY_COST_TAKE_PICTURE 1.0f

The energy cost to take a picture.

#define ENERGY_COST_THRUSTERS (.001f)*(.3f)

The energy cost to use one thousandth of a second of fuel.

#define ENERGY_COST_UPLOAD_PICTURES 1.0f
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The energy cost to upload pictures.

#define ENERGY_GAIN_RATE 0.5f

Energy gained per second.

int GAME_TIME 0

The time at game start.

#define ITEM_ENERGY MAX_ENERGY

The added energy given by an energy item.

#define ITEM_MIRROR_DURATION 24

The length a mirror lasts once activated.

#define ITEM_SCORE 1.5f

The added score given by a score item.

#define ITEM_TYPE_ADD_ENERGY 1

The type identifier for an energy item.

#define ITEM_TYPE_ADD_SCORE 0

The type identifier for a score item.

#define ITEM_TYPE_MIRROR 2

The type identifier for a mirror.

#define LIGHT_GREY_WIDTH .2

The width of the grey zone in the 2D/3D versions. The width of each grey zone in Alliance is
LIGHT_GREY_WIDTH/2.

#define LIGHT_SPEED .025f

The light moves at this speed (in m/s) during the Alliance portion of the game.

#define LIGHT_SWITCH_PERIOD 60

The light switches this number of seconds after the first flip in the 2D/3D versions of the game.
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#define LIGHT_WIDTH .8

The width of the area that is not dark. Note that this includes the grey zone.
#define MAX_ENERGY 5.0f

Energy capacity.
float MAX_FACING_ANGLE 0.968912f

Cosine of the angle at which pictures may be taken/uploaded.
#define MAX_FUEL(c, d) ((c<d)?c:d)

int MAX_GAME_TIME 180

Length of the whole game in seconds.
#define MIN_FUEL(a, b) ((a<b)?b:a)
#define MP_EMPTY O0xOfff

#define MP_RADIUS 0.05f

The maximum distance from which an item may be picked up.

#define MP_ROTATION_ANGLE 0.707106f

(rad) Rotation of satellite needed to pick up item (cos(90/2))

#define MP_SPEED 0.01f

The maximum speed at which an item may be picked up.

#define NUM_ITEMS 9

The number of items in the game.
#define OFFSIDES_PENALTY .02*PROP_ALLOWED_SECONDS
#define OOBgain 10.0f

#define PHOTO_MIN_DISTANCE 0.5

The minimum distance the sphere may be from the target of its photograph.
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#define PROP_ALLOWED_SECONDS 60.0f

Total time in thruster-seconds allowed per user. Full tank ~500 seconds.
#define SHOW_GAME_TRACE
#define START_SCORE 0.0f

Your score upon starting the game.

#define STARTING_ENERGY MAX_ENERGY

Starting energy.

#define STARTING_MIRRORS 0

The number of mirrors each sphere starts with.

#define UPLOAD_ANG_VEL 0.05f

The maximum speed at which pictures can be uploaded in rads/s, which is roughly equal to 2.8 deg/s.
This is calculated by taking the absolute value of the magnitude of the attitude rate vector.

int VEL_X 3

The index for the beginning of the velocity array inside of ZRState.
#define ZONE_nX -ZONE_pX

The lowest X coordinate in bounds.

#define ZONE_nY -ZONE_pY

The lowest Y coordinate in bounds.

#define ZONE_nZ -ZONE_pZ

The lowest Z coordinate in bounds.

#define ZONE_pX 0.64f

The highest X coordinate in bounds.

#define ZONE_pY 0.80f

The highest Y coordinate in bounds.
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#define ZONE_pZ 0.64f

The highest Z coordinate in bounds.

#define ZR3D

Variable Documentation

const float EARTH[3] = {0.0f, 0.0f, 1.0f}

Contains the attitude towards Earth.
The satellite's attidude must be within MAX_FACING_ANGLE to this attitude

const float ITEM_LOC[NUM_ITEMS][3]

Initial value:

{ 0.3,-0.2, 0.3},
1=0-3,=0-2, 0.3},
{ 0.0, 0.0, 0.3},
{ 0.0, 0.6, 0.4},
{ 0.4, 0.6, 0.0},
{-0.4, 0.6, 0.0},
{ 0.0, 0.6,-0.4},
{-0.4, 0.15,-0.4},
{ 0.4, 0.15,-0.4}

}
Array that outlines the locations of each item.

Usage: ITEM_LOC[int ItemID] Each element is an array of three floats for the XYZ
coordinates.

const int ITEM_TYPES[NUM_ITEMS]

Initial value:
{
ITEM TYPE ADD ENERGY,
ITEM TYPE ADD ENERGY,
ITEM TYPE ADD ENERGY,
ITEM TYPE ADD SCORE,
ITEM TYPE ADD SCORE,
ITEM TYPE ADD SCORE,
ITEM TYPE ADD SCORE,
ITEM TYPE MIRROR,
ITEM TYPE MIRROR
}

Array that outlines the types of each item.

Usage: ITEM_TYPES[int ItemID] Each element is an integer that refers to one of the
previously defined item types.

const float limits[3] = {ZONE_pX,ZONE_pY,ZONE_pZ}

The limits of the interaction zone.
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