
1

Class Index

Class List
Here are the classes, structs, unions and interfaces with brief descriptions:

ZeroRoboticsGame (The class of the game object that you will use) ...1

File Index

File List
ZRGame.h (Contains documentation of functions specific to the player side of the game) 1
Constants.h (A list of constants used in the ZR program) ...7

Class Documentation

ZeroRoboticsGame Class Reference

The class of the game object that you will use.

Public Member Functions
• float getFuelRemaining ()
• void sendMessage (unsigned char inputMsg)
• unsigned char receiveMessage ()
• bool isFacingOther ()

Check if the camera is pointed towards the other satellite.
• float takePic ()

Attempts to take a picture in the current position.
• float getPicPoints ()

Determines how many points a picture would give if taken immediately.
• int getMemoryFilled () const

Returns how many memory slots are currently in use.
• int getMemorySize ()

Returns the total number of memory slots available to the satellite.
• float uploadPics (void)

Attempts to upload pictures taken to Earth.
• bool isCameraOn ()

Makes sure the camera is on.
• float getEnergy ()

Tells how much energy the player has.

2

• float getOtherEnergy ()
Tells how much energy the opponent has, at a cost of 0 energy.

• bool posInLight (float pos[])
Returns true if the given coordinate is in the light zone.

• bool posInDark (float pos[])
Returns true if the given coordinate is in the dark zone.

• bool posInGrey (float pos[])
Returns true if the given coordinate is in a grey zone.

• int posInArea (float pos[])
Returns 1 if the given coordinate is in the light, -1 if in the dark, and 0 otherwise.

• float getLightInterfacePosition ()
Determines where the center of the grey zone at the tail end of the light zone is.

• float getDarkGreyBoundary ()
Determines where the boundary between the dark zone and the grey zone is.

• float getLightGreyBoundary ()
Determines where the boundary between the light zone and the grey zone is.

• float getLightSwitchTime ()
Determines how long until the light and dark zones next switch (2D/3D).

• int getNumItem ()
Returns the number of total items in play, whether they have been picked up yet or not.

• bool useMirror ()
Uses a held mirror item.

• int getMirrorTimeRemaining ()
Returns the amount of time left on your current mirror.

• int getNumMirrorsHeld ()
Returns the number of mirrors currently held and available for use.

• void getItemLoc (float pos[], int itemID)
Copies the location of a given item into the given array.

• int hasItem (int itemID)
Tells who has a given item.

• int getItemType (int itemID)
Returns what the item does.

• float getScore ()
Returns the player's current score.

• float getOtherScore ()
Returns the opponent's current score.

• int getCurrentTime ()
Returns the time.

• ZeroRoboticsGame (ZeroRoboticsGameImpl &impl, ZeroRoboticsAPIImpl &apiImpl)
Constructor for the game. The provided references should be singleton instances.

Member Function Documentation

int ZeroRoboticsGame::getCurrentTime ()

Returns the time.

3

float ZeroRoboticsGame::getDarkGreyBoundary ()

Determines where the boundary between the dark zone and the grey zone is.

Returns:
The y-coordinate of the plane between the dark zone and the grey zone.

float ZeroRoboticsGame::getEnergy ()

Tells how much energy the player has.

Returns:
Amount of energy the player satellite currently has.

float ZeroRoboticsGame::getFuelRemaining ()
Tells the player how much fuel remains.

Returns:
float indicating how many seconds of fuel remain.

void ZeroRoboticsGame::getItemLoc (float pos[], int itemID)

Copies the location of a given item into the given array.

Parameters:
pos A pointer to an array of size 3 which will be overwritten by the item location.
itemID The integer identifier of a given item.

int ZeroRoboticsGame::getItemType (int itemID)

Returns what the item does.
Possible Item Types:
• ITEM_TYPE_ADD_SCORE
• ITEM_TYPE_ADD_ENERGY
• ITEM_TYPE_MIRROR
Parameters:

itemID The integer identifier of a given item.

Returns:
The corresponding item type to the given identifier.

float ZeroRoboticsGame::getLightGreyBoundary ()

Determines where the boundary between the light zone and the grey zone is.

Returns:
The y-coordinate of the plane between the light zone and the grey zone.

4

float ZeroRoboticsGame::getLightInterfacePosition ()

Determines where the center of the grey zone at the tail end of the light zone is.
The tail end is at the lower Y-coordinate of the light zone, disregarding any portion that has
wrapped around.

Returns:
The y-coordinate of the light interface plane.

float ZeroRoboticsGame::getLightSwitchTime ()

Determines how long until the light and dark zones next switch (2D/3D).

Returns:
Number of seconds until the light switches.

int ZeroRoboticsGame::getMemoryFilled () const

Returns how many memory slots are currently in use.

Returns:
The number of memory slots used.

int ZeroRoboticsGame::getMemorySize ()

Returns the total number of memory slots available to the satellite.
This includes both used and unused slots.

Returns:
Number of memory slots available.

int ZeroRoboticsGame::getMirrorTimeRemaining ()

Returns the amount of time left on your current mirror.

Returns:
remaining time with a mirror up, zero if no mirror is up.

int ZeroRoboticsGame::getNumItem ()

Returns the number of total items in play, whether they have been picked up yet or not.

Returns:
Number of total items.

int ZeroRoboticsGame::getNumMirrorsHeld ()

Returns the number of mirrors currently held and available for use.

5

Returns:
number of mirrors held by the player.

float ZeroRoboticsGame::getOtherEnergy ()

Tells how much energy the opponent has, at a cost of 0 energy.

Returns:
Amount of energy the opponent satellite currently has.

float ZeroRoboticsGame::getOtherScore ()

Returns the opponent's current score.

float ZeroRoboticsGame::getPicPoints ()

Determines how many points a picture would give if taken immediately.
Does not actually take a picture. Costs 0.1 energy.

Returns:
The amount of points that the picture is worth.

float ZeroRoboticsGame::getScore ()

Returns the player's current score.

Returns:
Player satellite score.

int ZeroRoboticsGame::hasItem (int itemID)

Tells who has a given item.

Parameters:
itemID The integer identifier of a given item.

Returns:
0 if you have picked up the specified item, 1 if the other player has, or -1 if no one has.

ZeroRoboticsGame & ZeroRoboticsGame::instance () [static]
Retrieves the singleton instance of the game API. Users are not allowed to construct a game
instance, so the API must be retrieved through this interface.

Returns:
singleton of the game API

bool ZeroRoboticsGame::isCameraOn ()

6

Makes sure the camera is on.

Returns:
true if the camera is usable, false if not.

bool ZeroRoboticsGame::isFacingOther ()

Check if the camera is pointed towards the other satellite.

Returns:
true if the camera is facing the other satellite, false otherwise.

int ZeroRoboticsGame::posInArea (float pos[])

Returns 1 if the given coordinate is in the light, -1 if in the dark, and 0 otherwise.

Parameters:
pos An array of three floats in (x, y, z) order.

Returns:
1 if the given coordinate is in the light, -1 if in the dark, and 0 else.

bool ZeroRoboticsGame::posInDark (float pos[])

Returns true if the given coordinate is in the dark zone.

Parameters:
pos An array of three floats in (x, y, z) order.

Returns:
true if the coordinate is in dark, false else.

bool ZeroRoboticsGame::posInGrey (float pos[])

Returns true if the given coordinate is in a grey zone.

Parameters:
pos An array of three floats in (x, y, z) order.

Returns:
true if the coordinate is in grey, false else.

bool ZeroRoboticsGame::posInLight (float pos[])

Returns true if the given coordinate is in the light zone.

Parameters:
pos An array of three floats in (x, y, z) order.

7

Returns:
true if the coordinate is in light, false else.

unsigned char ZeroRoboticsGame::receiveMessage ()
Recieve value from 0-255 from other satellite.

Returns:
An unsigned char containing a value from 0-255.

void ZeroRoboticsGame::sendMessage (unsigned char inputMsg)
Send a value from 0-255 to the other satellite.

Parameters:
inputMsg Unsigned Char to be sent to other satellite.

float ZeroRoboticsGame::takePic ()

Attempts to take a picture in the current position.
The camera will be disabled for 3 seconds after an attempt, whether successful or not. Costs
1.0 energy.

Returns:
The amount of points that the picture taken is worth.

float ZeroRoboticsGame::uploadPics (void)

Attempts to upload pictures taken to Earth.
Will fail if not facing Earth (3D/Alliance). Disables camera for three seconds upon sucessful
upload. Costs 1.0 energy.

Returns:
The total score over the course of the game so far.

bool ZeroRoboticsGame::useMirror ()

Uses a held mirror item.

Returns:
true if the item existed and was used, false otherwise.

File Documentation

Constants.h File Reference

A list of constants used in the ZR program.

Defines
• #define ZR3D
• #define SHOW_GAME_TRACE

8

• #define GAME_TIME 0
The time at game start.

• #define VEL_X 3
The index for the beginning of the velocity array inside of ZRState.

• #define MAX_GAME_TIME 180
Length of the whole game in seconds.

• #define MAX_FACING_ANGLE 0.968912f
Cosine of the angle at which pictures may be taken/uploaded.

• #define UPLOAD_ANG_VEL 0.05f
The maximum speed at which pictures can be uploaded in rads/s, which is roughly equal to 2.8 deg/s.
This is calculated by taking the absolute value of the magnitude of the attitude rate vector.

• #define ITEM_TYPE_ADD_SCORE 0
The type identifier for a score item.

• #define ITEM_TYPE_ADD_ENERGY 1
The type identifier for an energy item.

• #define ITEM_TYPE_MIRROR 2
The type identifier for a mirror.

• #define ITEM_SCORE 1.5f
The added score given by a score item.

• #define ITEM_ENERGY MAX_ENERGY
The added energy given by an energy item.

• #define ITEM_MIRROR_DURATION 24
The length a mirror lasts once activated.

• #define NUM_ITEMS 9
The number of items in the game.

• #define STARTING_MIRRORS 0
The number of mirrors each sphere starts with.

• #define MP_SPEED 0.01f
The maximum speed at which an item may be picked up.

• #define MP_RADIUS 0.05f
The maximum distance from which an item may be picked up.

• #define MP_ROTATION_ANGLE 0.707106f
(rad) Rotation of satellite needed to pick up item (cos(90/2))

• #define MP_EMPTY 0x0fff
• #define LIGHT_SWITCH_PERIOD 60

The light switches this number of seconds after the first flip in the 2D/3D versions of the game.
• #define LIGHT_SPEED .025f

The light moves at this speed (in m/s) during the Alliance portion of the game.
• #define LIGHT_WIDTH .8

The width of the area that is not dark. Note that this includes the grey zone.
• #define LIGHT_GREY_WIDTH .2

The width of the grey zone in the 2D/3D versions. The width of each grey zone in Alliance is
LIGHT_GREY_WIDTH/2.

• #define DISABLE_CAMERA_TIME 3
The camera is disabled for this many seconds after taking and uploading pictures.

• #define CAMERA_DEFAULT_MEMORY 2
The number of memory slots an unmodified camera has.

• #define CAMERA_MAX_MEMORY 4

9

The number of memory slots the camera may have at a maximum.
• #define PHOTO_MIN_DISTANCE 0.5

The minimum distance the sphere may be from the target of its photograph.
• #define MIN_FUEL(a, b) ((a < b) ? b : a)
• #define MAX_FUEL(c, d) ((c < d) ? c : d)
• #define PROP_ALLOWED_SECONDS 60.0f

Total time in thruster-seconds allowed per user. Full tank ~500 seconds.
• #define MAX_ENERGY 5.0f

Energy capacity.
• #define STARTING_ENERGY MAX_ENERGY

Starting energy.
• #define ENERGY_GAIN_RATE 0.5f

Energy gained per second.
• #define ENERGY_COST_TAKE_PICTURE 1.0f

The energy cost to take a picture.
• #define ENERGY_COST_GET_OTHER_ENERGY 0.0f

The energy cost to determine how much energy your opponent has.
• #define ENERGY_COST_GET_PIC_POINTS 0.1f

The energy cost to determine how many points taking a picture right now would be worth, should you
choose to take it.

• #define ENERGY_COST_UPLOAD_PICTURES 1.0f
The energy cost to upload pictures.

• #define ENERGY_COST_THRUSTERS (.001f)*(.3f)
The energy cost to use one thousandth of a second of fuel.

• #define OFFSIDES_PENALTY .02*PROP_ALLOWED_SECONDS
• #define OOBgain 10.0f
• #define DRAG 1000.0f
• #define START_SCORE 0.0f

Your score upon starting the game.
• #define ZONE_pX 0.64f

The highest X coordinate in bounds.
• #define ZONE_pY 0.80f

The highest Y coordinate in bounds.
• #define ZONE_pZ 0.64f

The highest Z coordinate in bounds.
• #define ZONE_nX -ZONE_pX

The lowest X coordinate in bounds.
• #define ZONE_nY -ZONE_pY

The lowest Y coordinate in bounds.
• #define ZONE_nZ -ZONE_pZ

The lowest Z coordinate in bounds.

Variables
• const float EARTH [3] = {0.0f, 0.0f, 1.0f}

Contains the attitude towards Earth.
• const float ITEM_LOC [NUM_ITEMS][3]

Array that outlines the locations of each item.
• const int ITEM_TYPES [NUM_ITEMS]

10

Array that outlines the types of each item.
• const float limits [3] = {ZONE_pX,ZONE_pY,ZONE_pZ}

The limits of the interaction zone.

Detailed Description
A list of constants used in the ZR program.

Definition in file Constants.h.

Define Documentation

#define CAMERA_DEFAULT_MEMORY 2

The number of memory slots an unmodified camera has.

#define CAMERA_MAX_MEMORY 4

The number of memory slots the camera may have at a maximum.

#define DISABLE_CAMERA_TIME 3

The camera is disabled for this many seconds after taking and uploading pictures.

#define DRAG 1000.0f

#define ENERGY_COST_GET_OTHER_ENERGY 0.0f

The energy cost to determine how much energy your opponent has.

#define ENERGY_COST_GET_PIC_POINTS 0.1f

The energy cost to determine how many points taking a picture right now would be worth, should you
choose to take it.

#define ENERGY_COST_TAKE_PICTURE 1.0f

The energy cost to take a picture.

#define ENERGY_COST_THRUSTERS (.001f)*(.3f)

The energy cost to use one thousandth of a second of fuel.

#define ENERGY_COST_UPLOAD_PICTURES 1.0f

11

The energy cost to upload pictures.

#define ENERGY_GAIN_RATE 0.5f

Energy gained per second.

int GAME_TIME 0

The time at game start.

#define ITEM_ENERGY MAX_ENERGY

The added energy given by an energy item.

#define ITEM_MIRROR_DURATION 24

The length a mirror lasts once activated.

#define ITEM_SCORE 1.5f

The added score given by a score item.

#define ITEM_TYPE_ADD_ENERGY 1

The type identifier for an energy item.

#define ITEM_TYPE_ADD_SCORE 0

The type identifier for a score item.

#define ITEM_TYPE_MIRROR 2

The type identifier for a mirror.

#define LIGHT_GREY_WIDTH .2

The width of the grey zone in the 2D/3D versions. The width of each grey zone in Alliance is
LIGHT_GREY_WIDTH/2.

#define LIGHT_SPEED .025f

The light moves at this speed (in m/s) during the Alliance portion of the game.

#define LIGHT_SWITCH_PERIOD 60

The light switches this number of seconds after the first flip in the 2D/3D versions of the game.

12

#define LIGHT_WIDTH .8

The width of the area that is not dark. Note that this includes the grey zone.

#define MAX_ENERGY 5.0f

Energy capacity.

float MAX_FACING_ANGLE 0.968912f

Cosine of the angle at which pictures may be taken/uploaded.

#define MAX_FUEL(c, d) ((c < d) ? c : d)

int MAX_GAME_TIME 180

Length of the whole game in seconds.

#define MIN_FUEL(a, b) ((a < b) ? b : a)

#define MP_EMPTY 0x0fff

#define MP_RADIUS 0.05f

The maximum distance from which an item may be picked up.

#define MP_ROTATION_ANGLE 0.707106f

(rad) Rotation of satellite needed to pick up item (cos(90/2))

#define MP_SPEED 0.01f

The maximum speed at which an item may be picked up.

#define NUM_ITEMS 9

The number of items in the game.

#define OFFSIDES_PENALTY .02*PROP_ALLOWED_SECONDS

#define OOBgain 10.0f

#define PHOTO_MIN_DISTANCE 0.5

The minimum distance the sphere may be from the target of its photograph.

13

#define PROP_ALLOWED_SECONDS 60.0f

Total time in thruster-seconds allowed per user. Full tank ~500 seconds.

#define SHOW_GAME_TRACE

#define START_SCORE 0.0f

Your score upon starting the game.

#define STARTING_ENERGY MAX_ENERGY

Starting energy.

#define STARTING_MIRRORS 0

The number of mirrors each sphere starts with.

#define UPLOAD_ANG_VEL 0.05f

The maximum speed at which pictures can be uploaded in rads/s, which is roughly equal to 2.8 deg/s.
This is calculated by taking the absolute value of the magnitude of the attitude rate vector.

int VEL_X 3

The index for the beginning of the velocity array inside of ZRState.

#define ZONE_nX -ZONE_pX

The lowest X coordinate in bounds.

#define ZONE_nY -ZONE_pY

The lowest Y coordinate in bounds.

#define ZONE_nZ -ZONE_pZ

The lowest Z coordinate in bounds.

#define ZONE_pX 0.64f

The highest X coordinate in bounds.

#define ZONE_pY 0.80f

The highest Y coordinate in bounds.

14

#define ZONE_pZ 0.64f

The highest Z coordinate in bounds.

#define ZR3D

Variable Documentation

const float EARTH[3] = {0.0f, 0.0f, 1.0f}

Contains the attitude towards Earth.
The satellite's attidude must be within MAX_FACING_ANGLE to this attitude

const float ITEM_LOC[NUM_ITEMS][3]
Initial value:
 {
 { 0.3,-0.2, 0.3},
 {-0.3,-0.2, 0.3},
 { 0.0, 0.0, 0.3},
 { 0.0, 0.6, 0.4},
 { 0.4, 0.6, 0.0},
 {-0.4, 0.6, 0.0},
 { 0.0, 0.6,-0.4},
 {-0.4, 0.15,-0.4},
 { 0.4, 0.15,-0.4}

 }

Array that outlines the locations of each item.
Usage: ITEM_LOC[int ItemID] Each element is an array of three floats for the XYZ
coordinates.

const int ITEM_TYPES[NUM_ITEMS]
Initial value:
 {
 ITEM_TYPE_ADD_ENERGY,
 ITEM_TYPE_ADD_ENERGY,
 ITEM_TYPE_ADD_ENERGY,
 ITEM_TYPE_ADD_SCORE,
 ITEM_TYPE_ADD_SCORE,
 ITEM_TYPE_ADD_SCORE,
 ITEM_TYPE_ADD_SCORE,
 ITEM_TYPE_MIRROR,
 ITEM_TYPE_MIRROR
 }

Array that outlines the types of each item.
Usage: ITEM_TYPES[int ItemID] Each element is an integer that refers to one of the
previously defined item types.

const float limits[3] = {ZONE_pX,ZONE_pY,ZONE_pZ}

The limits of the interaction zone.

15

