

ZR with MathWorks MATLAB

Introductory Manual
v1.0

Introduction 1

MATLAB Language Resources 2

MATLAB with ZR 4

Revision History 5

Introduction
The MATLAB programming language can now be used to program the SPHERES satellites in the ZR
IDE, and is provided in partnership with MathWorks starting with the High School Tournament 2017.
You can now use all the scientific features of the MATLAB language directly in the ZR code editor!

As with any new language, there are a few things you will need to learn before you start. Read through
the resources below and make sure to follow the interactive tutorials of MATLAB Onramp.

You can learn more about MATLAB at MathWorks’ website:
https://www.mathworks.com/products/matlab.html

Ver 1.0 1

https://www.mathworks.com/products/matlab.html

MATLAB Language Resources
MATLAB Onramp (https://matlabacademy.mathworks.com/) is an interactive guide to MATLAB’s
basics. All sections are applicable to using MATLAB with ZR, except the ones specifically related to
MATLAB’s GUI and command line interface (e.g., sections 4 and 8-11). In particular, it is important to
learn how vectors (arrays) and functions work, so make sure to follow sections 3, 5, 6, 7.

A few helpful tips:

● Vectors and matrices in MATLAB use 1-based indexing:
○ a(1) is the first element of vector a,
○ a(0) is a syntax error.

● Line comments start with %
● To split a statement in multiple lines use the ellipsis “...”
● MATLAB supports “for” loops (see Onramp section 13). But it’s easier to use array operations

(Onramp section 6):

a = [1, 2, 3];
b = a + 5; % b equals [6, 7, 8]
c = a .* 2; % c equals [2, 4, 6]
d = a * c'; % vector/matrix multiplication, d equals 28
l = sqrt(sum(a . ̂ 2)); % l is length of vector a
l = sqrt(a * a'); % l is length of vector a
l = norm(a); % l is length of vector a

● A function can return an array:

state = api.getMyZRState(); % state is a 12-elements vector

● Functions can have multiple return values:

e = [8, 1, 6; 3, 5, 7]; % a matrix with 2 rows and 3 columns
[rows,cols] = size(d); % returns rows = 2 and cols = 3
[~,cols] = size(d); % if you only need the number of columns

● Matrices should always be addressed using two indexes matrix with rows and columns, so you
should always use 2 indexes to address it:

f = e(2,1); % f equals 3, the element in row 2, column 1
g = e(2,2:3); % g equals [5, 7]
h = e(2,:); % h equals [3, 5, 7], all elements of row 2

k = e(2); % k equals 3, addressing a matrix with only one

index

% is called linear indexing

Ver 1.0 2

https://matlabacademy.mathworks.com/

v = norm(state(4:6)); % v is the velocity of the 12-elements state

● If you want to learn more about array indexing and linear indexing in MATLAB, see the
following pages:

○ https://www.mathworks.com/help/matlab/learn_matlab/array-indexing.html
○ https://www.mathworks.com/company/newsletters/articles/matrix-indexing-in-matlab.html

● Notes about variables in MATLAB:

○ Unless otherwise specified, MATLAB variables are floating point, specifically of type
double. This includes, e.g., for-loop variables, that then have to be displayed in
api.DEBUG with the %f or %g specifiers.

○ In C variables have to both be declared (specify what data type they hold) and defined
(specify what value they hold, otherwise they may hold an undefined value):

/* C code */
double m; // variable declaration
m = 21; // variable definition

○ Variables in MATLAB do not have to be declared, but they always need to be defined:

% MATLAB Code
m = 21; % var definition and implicit declaration of type double
o = m + n; % MATLAB Error: Undefined function or variable 'n'

○ Variables in MATLAB are (normally) passed to functions by value and not by reference,
regardless of whether they are scalars or arrays. (In C arrays have to be passed by
reference.)

● Strings in MATLAB use single quotes (useful for the api.DEBUG function):

s = 'This is a string!';

● If an api.DEBUG message is not printing correctly, remember to check that the number of
specifiers in the format string (e.g., %f) is equal to the number of arguments after the string:

% 3 format specifiers and 3 arguments
api.DEBUG('Position: %f %f %f', pos(1), pos(2), pos(3));

● In the api.DEBUG function you can use most printf format specifiers. The most useful
however are:

○ %f to show numeric variables with a fixed number of decimal places
○ %g to show numeric variables with the most compact notation
○ %d to show boolean variables like, e.g., the return value from the function

game.hasAdapter()

● Some of the more advanced features of the MATLAB language may not be available in the ZR
IDE: an error message during validation will indicate if a feature is not supported. The graphical

Ver 1.0 3

https://www.mathworks.com/help/matlab/learn_matlab/array-indexing.html
https://www.mathworks.com/company/newsletters/articles/matrix-indexing-in-matlab.html

user interface features of MATLAB (e.g., plots, workspace, toolbox GUIs, etc.) are not
supported in the ZR IDE.

MATLAB with ZR
A ZR program written in MATLAB language uses Object-Oriented Programming (OOP) and is defined
as a handle class:

classdef ZRUserM < handle
properties

myVariable
end

methods

function init(obj)
obj.myVariable = 0;
…

end

function loop(obj)
localVariable = 1;
obj.myVariable = sqrt(2);
obj.myCustomFunction(localVariable, obj.myVariable);
…

end

function myCustomFunction(obj, argumentA, argumentB)
…

end
end

end

A few notes about OOP and handle classes in MATLAB:

● Properties are “global variables”, shared between functions and persistent between
subsequent calls to functions.

● Properties can be initialized in the properties block or in the init function.
● Every method (or function) must have obj as the first argument.
● The init and loop functions only take one argument, the obj argument.
● When calling a function that accepts arguments you do not pass the obj argument but only the

remaining ones.
● The obj argument is used to access properties with obj.propertyName and functions with

obj.functionName.

Ver 1.0 4

● Local variables are only accessible in the current function (even if there are two local variables
with the same name in two different functions, they don’t share their value).

● When you create more pages in the ZR IDE, all properties and all methods in all pages will be
part of the ZRUserM class.

● The classdef lines are not editable in the ZR code editor.

Revision History

Revision Date Changes Made By

V1.0 2017-09-29 Initial release for 3D game. DR

Ver 1.0 5

