SPHERES ISS CHALLENGE

Velocity

7, ? N
INASA m [ToPCoper]| MAP Wurora <§5'—3 I I I I I

ZER®

ROBOTICS setVelocityTarget

SSSSSSSSSSSSSSSSSSS

* This tutorial will teach you how to control the
velocity of your SPHERES by using the function
setVelocityTarget.

e Using setVelocityTarget is not easy. If you feel
confused during this tutorial, review previous
tutorials, experiment in the IDE, or ask your team
members for help. Also, never hesitate to email
the ZR team.

E ﬁ rvf. Iy I ol
e urora = |1

ZER® :
ROBOTICS The Scenario

SSSSSSSSSSSSSSSSSSS

* |n this tutorial, our goal is to move to an
imaginary item at the point (0.8, 0.0, 0.0) as
quickly as possible.

 We will walk you through three techniques for
reaching the item. The third will be the most
efficient, but you will have to go through the first
two in order to understand it.

* Create a new project called Project14a. We want
to start from scratch for this example.

E ﬁ rvf. Iy I ol
e urora = |1

ZER®

ROBOTICS Technique 1

SPHERES ISS CHALLENGE

* You can think of our first technique as the control
group.

e Simply create a new array of floats called item and
initialize it with the coordinates on the previous slide.

* Inloop(), set the position target to item. Compile and
run. float item[3]:;

volid init
item|
item[1l]
item[2]

| | |
OO O~
OO

AN O

void loop () {
api.setPositionTarget (item);

ZER®

ROBOTICS Results

SPHERES ISS CHALLENGE

* It takes the satellite about 28 seconds to reach the
item. As you already know, time is extremely valuable
in Zero Robotics. Every second counts.

* |If you can reach the item in less than 28 seconds, you
will have an immediate advantage over teams that just
use setPositionTarget to move.

X080 Y:0.01 Z:0.00 ‘

S W (vo-cooen v Qurora g5 1]}

ZER®

ROBOTICS Technique 2

SPHERES ISS CHALLENGE

* Now, we'll use setVelocityTarget to reach the item.
setVelocityTarget is tricky because velocity has magnitude

and direction.

* Direction is specified by the components of velocity (x, y, and
z). We'll focus on direction first.

e Save your code as Project14b and create three new arrays of
floats: myState[12], myPos[3], and vectorBetween|3].

* Retrieve myState and write the first three elements to myPos.

void loop () {
ap:.getM’7?State(n rStatce) ;
for (int 1=0; 1i<3; 1i++)

F m [TorPCaoDeEr]| M Murora SS'— III

ZER®
ROBOTICS Syntax

SPHERES ISS CHALLENGE

* Before we continue, we must address syntax again. It
may seem redundant, but it’s important to cover syntax
so you can avoid compiler errors and code deficiencies.

* You may have noticed that the for loop in the previous
slide was written without brackets. Brackets may be
omitted in loops and conditionals that contain only one
line of code. For example:

for (int 1=0; 1<3; 1++)

-
- - — - —
SE T A — — - —

~ N~
R

h
!

* From this point on, we will omit brackets for all
conditionals and loops with one line of code.

* g
urora 55| 11

ZER®

ROBOTICS Syntax

SPHERES ISS CHALLENGE

* If we were to add another line of code to the for loop,
then brackets would be required. For example:

- y - - - -
for (int 1=0; 1<3; 1++){
~ e -’V"; - = —s—j;

LI e -~ '_'--'i:‘

* If you don’t use bfackets, only the first line will be
interpreted as part of the for loop. In other words, the
code will be executed like this:

for (int 1=0; 1<3; 1i++){

p—
- ~ =~
-—

-
- g — - . -
— - = =

!

el T e =

- R
N Sl N

L
o

* If you want to use brackets in all conditionals and loops
out of habit, feel free to do so.

N .V:‘... W =
N (vo-coocr] e Qdurora - |11

ZER®

ROBOTICS vectorBetween

SPHERES ISS CHALLENGE

e Let’s get back to the algorithm. At this point, you’ll want
to find the vector pointing from your satellite to the
item. Do you remember how to use mathVecSubtract?
Store the vector in vectorBetween.

* Since we aren’t setting an attitude target, we don’t have
to normalize vectorBetween. Also, we aren’t concerned
with magnitude yet, so we can actually use
vectorBetween as the target velocity vector. It points in
the right direction, and that’s all we need right now.

e Compile and run.

mathVecSubtract (vectorBetween, item,myPos, 3) ;
apli.setVelocityTarget (vectorBetween) ;

. 2 * 1TH=
e durora £ |1

ZER®
ROBOTICS Results

SPHERES ISS CHALLENGE

* |t takes the satellite about 94 seconds to settle on the
target position.

* Is this good? Yes! Granted, 94 seconds is much worse
than 28 seconds, but we reached very high speeds in
this trial. All we have to do now is find a way to control
speed and use it to our advantage.

* The satellite passed the item many times until it finally
stopped moving. It did this because of linear

momentum.

, S N TTH=
e urora 55| 1 1

ZER® .
ROBOTICS Linear Momentum

SPHERES ISS CHALLENGE

 The magnitude of the target velocity vector (vectorBetween)
is equal to the distance between the satellite and the item.
So, when the satellite reached the item and the target
velocity was 0, why didn’t it stop?

* The satellite was still moving quite fast at this point. Even as
it passed the item and the thrusters fired in the opposite
direction (because the target velocity vector always points
toward the item), momentum carried the satellite away
from the item.

* With each pass, the satellite reached a lower speed and had
less momentum until it finally came to rest on the item.

= " 4 T
NASA m [TorCaober]| MAP @4([[’0”3 FSL,) I I I I

ZER®

ROBOTICS Technique 3

SPHERES ISS CHALLENGE

* |In order to reach the item without having to pass it
several times, we need to account for linear
momentum.

* The best way to do this is to use setVelocityTarget in
conjunction with setPositionTarget.

e Save your code as Projectl4c.

e Cut the setVelocityTarget statement from loop(). We'll
paste it back in later.

* We know that the magnitude of vectorBetween equals
distance. Let’s create a float distance to store this value.

distance = mathVecMagnitude (vectorBetween, 3);

, S TR
e urora s 1| g

ZER®

ROBOTICS Distance

SPHERES ISS CHALLENGE

e Distance is key. We'll use a set of conditionals dependent on
distance to tell the satellite when to aim for a target
velocity, and when to just use a target position.

e We know that because of momentum, the satellite needs
time (and space) to come to rest.

* For this example, we found by trial and error that 0.6 mis
about enough distance for the satellite to slow to a stop.

* Apply the target velocity when distance > 0.6, and just set a
target position when the satellite is within 0.6 m of the item.

if (distance>0.86)

api.setVelocityTarget (vectorBetween);
else

api.setPositionTarget (item);

Rl I o
urora 55 | 1]

ZER®
ROBOTICS Results

SPHERES ISS CHALLENGE

* The satellite reaches the item in about 25 seconds. That’s
better than 28! Like we said, every second counts. Being
able to reach a position faster than your opponent might
mean the difference between winning and losing that
match.

* Can it be done faster? Yes! This code is better than the first
two algorithms, but it’s still not optimal. The distance cutoff
of 0.6 m was an estimation. You may be able to apply
setVelocityTarget for longer —it’s up to you to do the math.

* After 25 seconds, the satellite continues to adjust its
position within a range of about 0.02 m. This is a result of
drifting and momentum. Linear momentum is a pain! Learn

to handle momentum and you will do well in this
competition.

= " 4 T
NASA m [TorCaober]| MAP @4([[’0”3 FSL,) I I I I

ZER®

ROBOTICS Additional Notes

SPHERES ISS CHALLENGE

* vectorBetween is really a position vector; the values are
arbitrary when used for velocity. We used it because it
pointed in the right direction.

* The magnitude of vectorBetween is the SPHERE’s speed. We
won’t walk you through the process of controlling speed.
That’s up to you. You have the skill set — now put it to use!

* In the last example, the target velocity changed as the
satellite’s position changed. You may choose this approach,
or you may implement a constant target velocity.

 Keep in mind that SPHERES cannot move infinitely fast. Keep
target speeds well under 0.1 m/s.

S " s u -
NASA m [TorCaober]| MAP @4([[’0”3 FSL,) I I I I

ZER®

ROBOTICS Unique Code

SPHERES ISS CHALLENGE

* At this stage in the tutorial set, you’ll find that we won’t
walk you through everything. We want you to write
creative and innovative algorithms that are unique
compared to your opponents’ algorithms.

* You will also need to write versatile code. In this
tutorial, we were able to estimate a distance cutoff of
0.6 m because we knew how far we were from the
object. To be able to move everywhere as efficiently as
possible, make the distance cutoff a variable dependent
on distance, current velocity, and/or other factors.

 Work together as a team to find the most efficient
approach and implement it in your code. Good luck!

‘ = * 1=
e durora £ |1

