SPHERES ISS CHALLENGE

setAttitudeTarget,
Revisited

: T
[NASA m [TorCober] MAP @/lurora C§SL3 I I I I I




ZER®

ROBOTICS Goals

SPHERES ISS CHALLENGE

* In this tutorial you will:
— ldentify the vector between your SPHERE and a point.
— Normalize the vector to a unit vector so it specifies only direction.
— Use the normal vector with setAttitudeTarget to rotate to face the

point.

* Now that we’ve covered the basics and how to use vectors
to control position, we’ll go over how to use vectors to
control attitude.

* Rotation is no less important than translation, and learning
to rotate will help you write better code.

* As before, we’ll go over the fundamentals first, then the
code.

----------------

4 H N
we Aurora 5., | ! | 1




ZER®

ROBOTICS Direction

SSSSSSSSSSSSSSSSSSS

* |[n two dimensions, direction can be measured by
the angle (0) between the vector and the x-axis.

* However, the direction of a vector is more useful
in the form of a unit vector, a vector with a
magnitude of 1.

e A unit vector has the same direction as the
original vector.

* There is exactly one unit vector for every
direction, so finding the unit vector is equivalent

to finding the direction.

E ﬁ rvf. Iy I ol
e urora = |1




ZER®

ROBOTICS Finding the Unit Vector

SSSSSSSSSSSSSSSSSSS

* To find the unit vector a by hand, first find the
magnitude of the original vector a.

* Then, divide each component of the original vector by
the magnitude. This is called normalizing the vector.

e ex:a=1[2,2,1]
al=27+22+1> =9 =3

]

. 2 21
d = [_9_9_
3 33

. 2 % || Hm
e Aurora s I I 1



ZER®

ROBOTICS setAttitudeTarget

SPHERES ISS CHALLENGE

* If you haven’t already, go through the tutorial on
setAttitudeTarget before you continue.

 The setAttitudeTarget function requires a unit vector as the
argument.

* In this example, our goal is to have the satellite face the
origin at all times as the satellite moves around.

* Open Project12 from the last tutorial and save it as
Project13.

* Delete this last part of your existing code:

distance = mathVecMagnitude (vectorBetween, 3):;
i1f (distance > 0.1){
api.setPositionTarget (i1temPos);

bEBUG(("%f",d:sta:ce));

=N | | He
urora se\- I I |

----------------



ZER®

ROBOTICS Create Imaginary Iltems

SPHERES 1SS CHALLENGE

 We want to create several imaginary items all over the
playing space. We also want an array for the origin.

* Create a new array for each item and initialize them in
init() with the coordinates below.

item1 (0.4, 0.4, 0.6)
item?2 (-0.4,-0.4, -0.6)
item3 (0.1,-0.2,0.3)
item4 (0.5, 0.2, -0.5)
item5 (-0.2,0.4,0.1)
origin (0.0, 0.0, 0.0)

* e
____________ WAurora 55, | ! | 1




ZER®

ROBOTICS Create a Step Counter

SPHERES ISS CHALLENGE

e Declare int counter and initialize it to O.

* Before the closing bracket of loop(), increment counter.
counter++;

e Since loop() is called once per second, counter keeps
time. For the sake of simplicity, we will give the satellite
30 seconds to navigate to each item.

* Create an “if, else if, else” framework dependent on

time.
if (counter < 30){}
else if (counter < 60){}
else if (counter < 90){}

else if (counter 120) {}
else {}

nnnnnnnnnnnnnnnn




ZER®

ROBOTICS Set the Position Target

SPHERES ISS CHALLENGE

* For each conditional statement, set the position target
to the corresponding item.

if (counter < 30){
api.setPositionTarget (iteml) ;

else 1if (counter < 60) {
api.setPositionTarget (item?2) ;

else if (counter < 380)
Targe t( tem3) ;

api.setPositionld

else 1f (counter < 120){
api.setPositionTarget (itemsd) ;

else {
api.setPositionTarget (itemd) ;

H I
i/lumra SSL Ill



ZER®

ROBOTICS Find the Unit Vector

SPHERES ISS CHALLENGE

 You should still have the mathVecSubtract statement
from the last tutorial in loop().

— Copy and paste it below the else statement.
— Change itemPos to origin.

* vectorBetween now references the vector between
your satellite and the origin. To make it a unit vector,
we have to normalize it.

* Use the function mathVecNormalize. Give the vector
and the length as arguments.

mathVecSubtract (vectorBetween, origin,myPos, 3);
mathVecNormalize (vectorBetween, 3);

N .V:‘... W =
N (vo-coocr] e Qdurora - |1 1



ZER®

ROBOTICS Rotate to Face

SPHERES ISS CHALLENGE

e All that’s left is to set the attitude target to the unit
vector vectorBetween. Use the function
setAttitudeTarget.

 The last few lines of your code should look like this:

else {
api.setPositionTarget (itemd) ;

mathVecSubtract (vectorBetween,origin,myPos, 3);
mathVecNormalize (vectorBetween, 3) ;
apli.setAttitudeTarget (vectorBetween) ;

counterxr++;

-, £y N -
puasa m [ToPCoper]| MAP Wurora (g*SL’) I I I Ill



ZER®

ROBOTICS Test ng

SPHERES ISS CHALLENGE

e Compile and run the
simulation. Make sure the
maximum simulation time is at
least 180 seconds.

e Zoom in and rotate the

coordinate plane. Can you see
the Velcro face of the satellite

facing the origin?




=]
ég';OTICS What’s Next?

SPHERES ISS CHALLENGE

 Now you know how to use vectors to move around the
coordinate plane and rotate to face any direction. This

will come in handy when you program your satellite to
spin and revolve, as covered in later tutorials.

* So, you know the basics. But what about efficiency? Go
on to the next tutorials to learn how to make your
satellite fast and agile. Good luck!

, S TR
e urora s 1| g




