

Functions and the Step Counter Model (V 1.1)

Plii

Learning transforms

TOPCODER

- In this tutorial you will:
 - Learn to use a step counter in your program
 - Practice creating functions
- Important note: There will be several slides at the beginning of this tutorial to read and understand before you begin to create your next program.

Aurora 3

- The sketch and flow diagram on the right describe the program you wrote in a previous tutorial (*Applied Conditionals*)
- What would happen if the location of Position B were changed? Would this program always move the SPHERES satellite to Position B?
- On the next slide you will be given an example of a location where the program would not work and the reason why.

CASIS

TOPCODER

Learning transforms

Example that doesn't work

- Look at the new position called Position C.
 - Q: How does the x-coordinate of the satellite change as it moves from position A (1,0,0) to position C (0,1,0) in the picture?
 - A: The satellite starts with x-coordinate = 1 and moves towards x coordinate = 0
- The program sets target x = 0.97 then states:

If myZRState[0] < target [0],
(which means If SPHERES x-coordinate < 0.97)
Then go to position A</pre>

Else go to position C

- As the satellite moves from position A toward position C, its x-coordinate becomes < 0.97 and it will be sent back to position A.
 - The program will not allow the satellite to move to position C (which has x-coordinate < 0.97)

- So what is the target value that you would choose to move the satellite from position A to position C?
 - Since the satellite starts with x-coordinate=1 and moves towards x-coordinate=0:
 - Pick a target close to zero.
 - Pick target[0]=0.03 to include margin for error
- In this case the satellite's x-coordinate is greater than 0.03 until it reaches the target
- So the conditional statement for this example would be:

"If myZRState[0] > target[0]

Then continue to position C"

Aurora 5

[TOPCODER]

- We need to write a program that allows us to pick different target values depending on where we want the satellite to move
- We can solve this problem using a step counter (as described on the following slides)

ARP

Using a step counter

- A step counter is one way you can organize a program. It is particularly useful in a game like ZR.
- To use a step counter:
 - Break up the program into steps (for example, moving to a point is one step)
 - Use a variable to keep track of how many steps have been performed
 - Use conditionals to make sure you execute only the next step in the process
 - This process ensures that all steps happen in the right order
- An example of this process is provided on the next several slides

CASIS

[TOPCODER]

Aurora 7

C Learning transforms

DARP

Look more closely at the example: Let's say the first step in the program (step 0) is for the satellite to go to position A

- The flow diagram to the right includes a step counter. Note that:
 - A conditional statement is added to the program to check if the program is in the first step (Step=0?)
 - The step is increased by 1
 (Step=step+1) after the satellite completes the first step by reaching position A
 - Another conditional statement is added to check whether or not the program has moved to the next step (Step=1?).

CASIS

[TOPCODER]

Aurora 8

Learning transforms

- Next we want the satellite to leave position A and go to position C (as shown in the sketch)
- By using a step counter we don't have the same problem that we had before because the variable target x can be given a new value inside each step.
- For Step=0: target x was set to a value appropriate for position A (see previous slide)
- For Step=1? target x is set to a new value appropriate for position C (shown here)

CASIS

Next, Step=0 resets the step counter

DARP

[TOPCODER]

Aurora 9

Learning transforms

• This slide shows the complete flow chart

Functions

- We can make this program simpler to read by breaking it down into smaller pieces.
- This is done by creating procedural functions
- For example, we can create two functions
 - One that includes the parts of the program that sends the satellite to position A
 - One that includes the parts of the program that send the satellite to position C

CASIS

DARP

 This is what the example program's flow diagram and text editor program would look like if written using two functions: one called "go to position A" and one called "go to position C"

16 -	<pre>void loop(){</pre>
17	<pre>api.getMyZRState(myZRState);</pre>
18 -	if (step == 0){
19	<pre>go_to_positionA();</pre>
20	}
21 -	<pre>else if (step == 1) {</pre>
22	<pre>go_to_positionC();</pre>
23	}
24 -	else{
25	step = 0;
26	}
27	}

• You don't see Step=step+1 here because it is included inside each function.

- To create this program with a step counter and functions, you will start from the program you created in the previous tutorial
 - Open the ZR IDE
 - Open Project 10
 - On the menu bar select "File" and then "Save As" from the drop down menu.
 - Type in Project 11 and select Free Mode
- You will need to create two new variables
 - float positionC [3]: Set initial value to 0,1,0
 - Int step : Leave initial value blank
- Verify the remaining variables as follows:
 - float positionA[3] : Verify initial value is set to 1,0,0
 - float myZRstate[12] : Leave initial value blank
 - float target[3] : Leave initial value blank

1 2 3 4 5 6	<pre>float myZRState[12]; float positionA[3]; float target[3]; float positionC[3]; int step;</pre>
7	<pre>void init() {</pre>
8	
9	<pre>positionA[0] = 1;</pre>
10	<pre>positionA[1] = 0;</pre>
11	<pre>positionA[2] = 0;</pre>
12	<pre>positionC[0] = 0;</pre>
13	<pre>positionC[1] = 1;</pre>
14	positionC[2] = 0;
15	
16	}

- Your program already has a function to send the SPHERES to position A that is very similar to the one shown in the flow diagram
- Click on the page "go_To_PositionA"
- Can you see the difference between the part of the flow diagram that we want to make into a function called "go to PositionA" and your program?
- (Hint:
 - Compare your program's else statement with the flow diagram
 - your old program continues to set the SPHERES position to positionA
 - the new program increments the step counter (step=step+1)

- Now let's create the second function in the flow diagram "go_to_positionC"
- The first step is to create a new page called "go_to_positionC"
- Click on the "+" button on the "pages" window
- For Page Name type: go_to_positionC.
 This will be the name of your function
 - Leave Return Value blank
 - Click the "Create Page" button

- Your new page will show up in the list of pages
- Click on the "go_to_positionA" page.
- Because the two functions are similar, you will copy and paste the code from the "go_to_positionA" page into the "go_to_positionC" page and then edit.
- This code now needs to be edited to send the satellite to positionC (instead of positionA) as described on the next slide

Create "go_to_positionC" Function (cont.)

- The portion of the flow diagram that sends the satellite to position C is shown to the right as a reference
- Change first line to **go_to_positionC**
- Change "target [0] = 0.97" to: "target [0] = 0.03"
- Change the conditional statement from myZRState[0]<target[0] to myZRState[0]>target[0]
- Change the api.setPositionTarget(positionA) to api.setPositionTarget(positionC)
- Step=step+1 should already be in your program
- Your function "go_to_positionC" is complete!

TOPCODER

Learning transforms

- The next step is to go back to the main loop and create the program shown below
- This program uses a step counter and "calls" the functions
- Try creating the program on your own, and use the next slide to check your work.

16 -	<pre>void loop(){</pre>
17	<pre>api.getMyZRState(myZRState);</pre>
18 -	if (step == 0){
19	<pre>go_to_positionA();</pre>
20	}
21 -	<pre>else if (step == 1) {</pre>
22	<pre>go_to_positionC();</pre>
23	}
24 -	else{
25	step = $0;$
26	}
27	}

- Your code is complete!
- Compile, Simulate
 - Load settings: Tutorial _180
 - View simulation

 The C Code for the separate pages "main", "go_to_positionA", and "go_to_positionC" is shown below:

ΛΛ

EDC Learning transforms lives.

- The program you just created resets the step counter to zero.
- If you wanted to program the satellite to go to another position after going to positionC, can you see how this would be done?
 - You would:
 - Create a new function
 - Replace "step=0" with Else if statement for step =2
 - Call the new function
- When you program your SPHERES for the game you will probably use a series of nested Else if statements with multiple steps
- Using functions will also make it easier for you to figure out which part of your program needs debugging

- Congratulations!
 - You have learned how to:
 - Use a Step Counter
 - Create multiple functions
 - You are just about ready to start programming your game!

