SPHERES ISS CHALLENGE

Recommended
Functions

7, ? N
INASA m [ToPCoper]| MAP a/'urora 655'—3 I I I I I

ZER®

ROBOTICS Writing Functions

SSSSSSSSSSSSSSSSSSS

* If you haven’t already, walk through the tutorial on
writing your own functions. Writing functions makes
for organized and easily-editable code, and is a skill
all programmers should have.

* The ZR APl is loaded with functions for your use, but
there are some functions we want you to write
yourself. We've made a list of functions you may
want to add to your algorithms.

e All the functions in this tutorial are suggestions; you
aren’t required to write any of them, and we
encourage you to write functions that aren’t on this
list.

E ﬁ rv:’. Iy I ol
e urora = |1

ZER®

ROBOTICS Writing Functions

SSSSSSSSSSSSSSSSSSS

 There are many approaches to writing each
function. The best solutions will be the most
creative and precise. Collaborate with your team
members.

* Test them, test them, and test them again. If your
functions aren’t reliable in every situation, things
could go disastrously.

* Conditionals are your best friend. Use conditionals
in loop() to decide when to call certain functions,
and use conditionals within your functions to
account for every possible scenario.

E ﬁ rvf. Iy I ol
e urora = |1

ZER®

ROBOTICS distanceBetween

SSSSSSSSSSSSSSSSSSS

 You have written the code for this before — it is
very simple.

 Make distance an integral part of your code. At
all times, keep track of your distance to certain
items, your opponent’s distance to certain items,
and your opponent’s state in general.

* You don’t know how fast your opponent can
move, so use distance as a conditional in your

overall strategy to determine who has the upper
hand.

: S K5 I e
wr Qurora s |1

ZER®

ROBOTICS moveFast

SSSSSSSSSSSSSSSSSSS

* setPositionTarget is reliable but ultimately
inefficient. Use setVelocityTarget and/or
setForces along with setPositionTarget to create
a function that gets you to a target position as
fast as possible, every time.

 Watch out for the second scenario in the
setVelocityTarget tutorial. Having to narrow in
on your target after several passes will end up
wasting time.

E ﬁ rvf. Iy I ol
e urora = |1

ZER®

ROBOTICS isStopped

SPHERES ISS CHALLENGE

* Write a function that returns a boolean to
determine whether or not your satellite is
moving. Account for all types of motion
(translational and rotational).

= # T
m [TorCaober]| MAP "\\ﬂ/lurora ?SL') I I I I I

ZER®

ROBOTICS hasReachedTargetPos

SSSSSSSSSSSSSSSSSSS

* Because SPHERES drift, your current position
may not exactly match your target position after
you’'ve reached a waypoint. If you use a simple
== operator, your conditional will return false if
you are even a hundredth of a meter off of your
target position.

 Determine a range of values around a target
position at which you would consider the
satellite to have reached the target.

E ﬁ rvf. Iy I ol
e urora = |1

ZER®

ROBOTICS hasReachedTargetAtt

SPHERES ISS CHALLENGE

 You’ll want to write a similar function for
pointing. Zero Robotics allows some leeway in
attitude, often a /15 radian tolerance.

* Use mathVeclnner to find the dot product of your
attitude vector and the target attitude vector.

This is where the
This is the target As long as this angle is less SPHERE is actually
vector you want than or equal to T1/15 radians, pointing, which may
your SPHERE to the SPHERE is pointing be (or not) exactly
be aiming with towards the desired object. at the target you
(the one you have desire.
written into the
code).

Nasa m [TorCoper]| MAP i/‘llll’("'a (g‘SL')I II I

ZER® :
ROBOTICS SpIn

SSSSSSSSSSSSSSSSSSS

* Having a solid spin algorithm will boost you up
the leaderboard.

* Use the functions in the APl with your math and
physics skills. Controlling wobble while spinning
is very difficult, but it can be done.

* You may want one spin function with several
parameters or several independent spin
functions to account for the desired axis of
rotation or target angular velocity.

* g
e Aurora S5 | ! | 1

ZER®
ROBOTICS revolve

SSSSSSSSSSSSSSSSSSS

e Like spinning, a sound algorithm for revolving will
be a huge advantage in this competition.

e Test this function extensively. Closely monitor
your state and use the debug function for
simulations. Use conditionals to ensure that you
can steer your satellite back to the right path if
something goes awry.

e Remember to aim for uniform circular motion.

* g
e Aurora S5 | ! | It

ZER®

ROBOTICS avoidCollision

SSSSSSSSSSSSSSSSSSS

* Collision avoidance prevents you from crashing
into your opponent’s satellite, but has a penalty.
Also, it’s very hard to regain speed and get back
on the right path after a near-collision.

* You'll be better off if you write a function to
prevent collision avoidance from ever kicking in.
Keep track of myState and otherState, and give
your satellite enough time and space to
maneuver out of the way.

E ﬁ rvf. Iy I ol
e urora = |1

ZER®

ROBOTICS Game-specific Functions

SSSSSSSSSSSSSSSSSSS

 The functions we’ve listed apply to all Zero Robotics
competitions. You should also write functions
specific to each year’s game.

* Forinstance, if the game involves navigating
through debris, write a function that finds the
fastest route.

* Writing functions will make your code more
versatile and efficient — two of the core goals of
programming. Ensure accuracy, but never hesitate
to take an unconventional approach. The most
creative functions are often the most successful.

E ﬁ rv:’. Iy I ol
e urora = |1

