SPHERES ISS CHALLENGE

Revolving: Polar
Coordinates

: T
[NASA m [TorCober] MAP @/lurora C§SL3 I I I I I




ZER®

ROBOTICS Polar Coordinates

SPHERES ISS CHALLENGE

* This tutorial will teach you how to program your
satellite to revolve using polar coordinates.

* Using polar coordinates to revolve allows your satellite
to maintain a constant radius of orbit, as well as adhere
to a target angular velocity.

* However, using polar coordinates has its limitations.

This tutorial will only handle revolving in 2-D about the
origin.

. 2 * 1TH=
e durora £ |1



ZER® .
ROBOTICS Polar Coordinates

SPHERES ISS CHALLENGE

 The 2-D polar coordinate system is based on radius (r)
and angle (0).

* |ts relation to the Cartesian coordinate system is below.

X =rcosé
y=rsinf

« g
we Aurora 5., | ! | 1




ZER®

ROBOTICS Uniform Circular Motion

SPHERES ISS CHALLENGE

* Uniform circular motion is revolution around a point
while maintaining a constant speed and radius. For the
best and most stable path, always try to achieve
uniform circular motion.

* Although speed is constant, velocity is always changing
because it is tangent to the path of revolution

 The acceleration vector always points toward the center
of rotation. This type of acceleration is called
centripetal acceleration. Centripetal acceleration is
dependent on tangential velocity and the radius of the
orbit. 12

: S K5 I e
wr Qurora s |1




ZER® . . .
ROBOTICS Uniform Circular Motion

SPHERES 1SS CHALLENGE

4
 MAR @gymtaﬁ%%l'lll




ZER® :
ROBOTICS The Scenario

SPHERES ISS CHALLENGE

* Revolving with polar coordinates is simple. Choose a
radius and a target angular speed, calculate x and y, and
set your position target.

* Let’s do an example. We want to revolve around a
vertical axis at the origin, keeping a radius of 0.3 m and
a speed of 2 deg/sec.

* The technique is simple, but there will be a significant
amount of coding in this tutorial. When you program
your satellite for the competition, you may find yourself
writing hundreds of lines of code. This algorithm isn’t
nearly that long, but it’s good practice.

* g
e Aurora S5 | ! | 1




ZER®
REBQ@TICS

SPHERES 1SS CHALLENGE

Prep Work

* Create a new project called Project20.

* Let’s start by creating all our variables.

axis[3]
targetPos|3]
targetRadius
angle
myState
myPos
targetAtt

actualRadius

Axis of rotation

Store our x and y targets
Polar coordinate r

Polar coordinate O

State array

Current position

Face the axis of rotation

Debug radius

* e
' MAP @f!ymfaﬁﬁ%lllll



ZER®

ROBOTICS Initialize Variables

SPHERES ISS CHALLENGE

* Only a few variables need to be initialized.
 Set angle to 0.
e Set targetRadius to 0.3.

* |nitialize axis with O’s because we are rotating about the
origin.
vold i1nit () {
angle=0.0;

targetRadius=0.3;

axis[0]1=0.0;
axis[l11]1=0.0;
axis[2]1=0.0;

m [ToPCoDErR] MAP @Aurora (g ;'_3 I I I I I




ZER®

ROBOTICS Target Position

SPHERES ISS CHALLENGE

* We need to use the equations x = rcosO and y = rsin®.
Since we are revolving in 2-D, our z-component is O.

* Before you see the code below, see if you can figure it
out yourself. Use the trig functions in math.h in the API.

* After we set the target position, we need to increment
angle by 2° so we can maintain our target speed.
Remember that loop() is called every second.

vold loop() {
targetPos|[0
targetPos|[1
targetPos|[2]
api. setPosition

angle+=2. Q*Pix;

]=targetRadius*cosf (an
]=targetRadius*sinf (an

le);
le

| -
) s

g
C

”~
-

w\-

get (targetPos);

(N} D ] K

-
-
r

()

nnnnnnnnnnnnnnnn

\ m [TarCaber] I Mul'ora SS'— III



ZER®

ROBOTICS Attitude Ta rget

SPHERES ISS CHALLENGE

* To maintain uniform circular motion, the satellite must
face the center of rotation at all times. We can
accomplish this by finding and setting an attitude target.

— If this sounds unfamiliar, walk through the tutorial
setAttitudeTarget, Revisited.

e Start by retrieving myState and writing the first three
elements to myPos.

 We want targetAtt to point from myPos to axis, so use
mathVecSubtract.

api.getMyZRState (myState) ;

for (int 1=0; 1<3; 1i++)
myPos[i]l=myState([i]:;

mathVecSubtract (targetAtt,axis, myPos, 3);

ks I n -
urora & | 1|1

----------------



ZER® .
ROBOTICS Radius

SPHERES ISS CHALLENGE

* Right now, targetAtt represents the actual radius of the
circular path. Before we make it a unit vector, we want
to store the magnitude in actualRadius for debugging

Purposes.
actualRadius=mathVecMagnitude (targetAtt, 3);
DEBUG(("3Lf" ,actualRadius) )

* Now we can nhormalize targetAtt and set our attitude
target.

mathVecNormalize (targetAtt, 3);
apli.setAttitudeTarget (targetiAtt);

e Compile and run.

we urora &5 |11




ZER®

ROBOTICS Results

SPHERES ISS CHALLENGE

 Keep an eye on the console. Once the satellite enters
orbit, the radius is maintained at approximately 0.3 m.

* Also observe the state array values in the top left hand
corner. Once the satellite enters orbit, the y-component
of angular velocity hovers around 2 deg/sec.

* The main issue is the inefficient maneuver the satellite
performs before it begins revolving. This is the result of
a poorly-placed entry point, more commonly known as
a waypoint.

, S N TTH=
e urora 55| 1 1




ZER®

ROBOTICS Waypoint

SPHERES ISS CHALLENGE

 We want you to write unique algorithms. We won’t
teach you how to set a waypoint because you have the
necessary skills. But, we will give you a few hints.

* Only set a waypoint before you are in orbit. Find a way
to decide if your satellite is revolving, and use a boolean
to make sure you don’t accidentally call the waypoint
while in orbit. Conditionals will be necessary.

— A boolean is a variable that is either true or false.

 Use momentum to your advantage. In this example, we
had to completely stop and move in the opposite
direction to revolve. Make sure this NEVER happens.

* Always aim for efficiency. Think outside the box!

E ﬁ rv:’. Iy I ol
e urora = |1



