SPHERES ISS CHALLENGE

Spinning: Partial Turns

7, ? N
INASA m [ToPCoper]| MAP a/'urora 655'—3 I I I I I

ZER®

ROBOTICS Partial Turns

SPHERES ISS CHALLENGE

* Spinning doesn’t always require making full revolutions.
For instance, some ZR competitions will ask you to
rotate 90° to pick up an item.

* |n this tutorial, you will:

— practice using dot product in calculations
— implement the function mathVeclnner

— use trigonometric functions in code

— monitor changes in angular displacement

:‘” m [TorCoper]| MAP @/Iurora g;%lllil-

SLIUNY SCIENGE L]

ZER®

ROBOTICS Dot Product

SPHERES ISS CHALLENGE

 To measure your satellite’s angular displacement (0),
you will need to use the dot product. Dot product is a

scalar quantity that can be used to find the angle
between two vectors.

* To find the dot product, also known as inner product,
multiply the corresponding components of the two
vectors and add the sums.

—ex:[3,2,-5] ®[1,4,6]=(3*1)+(2*4) + (-5*6)
=3+8-30=-19

e For partial turns, the two vectors will be your initial
attitude and current attitude unit vectors.

. 2 * 1TH=
e durora £ |1

ZER®

ROBOTICS Dot Product

SSSSSSSSSSSSSSSSSSS

* Asyou can see, the dot product is a scalar quantity, not
a vector. We can use the dot product to find the angular
displacement using this formula:

ash=(cost)(a])(|b|)

 aand b are vectors. Treat a as your initial attitude
vector and b as your current attitude vector.

 The equation is more useful if we isolate 6.

o — 4, a°*b
s Clapv)’

. 2 * 1TH=
e durora £ |1

ZER®

ROBOTICS Dot Product

SSSSSSSSSSSSSSSSSSS

e Let’s calculate the angle between the vectors in
the previous example.

al=v/9+4+25=6.16

b|=v1+16+36 =7.28
—19 =(cos 0)(6.16)(7.28)
—0.424 = cosf

0 = cos™ (-0.424)
0 =115.09°

* g
e Aurora S5 | ! | 1

ZER®
ROBOTICS Try It

SPHERES ISS CHALLENGE

e Let’s try the scenario in which we have to pick up an
item by rotating:
— 90° clockwise
— 15 deg/sec on the body z-axis.

* Open Projectl7 from the Spinning: Angular Velocity
tutorial and save it as Project18. Alter the initial values
of targetRate to match the above specifications.

e Revisit previous tutorials on spinning if you don’t
understand how to determine the values for the
targetRate array. Try to figure it out before you see the
solution on the next slide.

. 2 * 1TH=
e durora £ |1

ZER®

ROBOTICS Solution

SPHERES 1SS CHALLENGE

targetRate|
targetRate|
targetRate|

ZER®
ROBOTICS Prep

SPHERES ISS CHALLENGE

* We need to create a few variables. Create the arrays
myState[12], initAtt[3], and myAtt[3], and the floats dot
and angle. None of them need to be initialized.

* In loop(), start by retrieving myState and writing your
attitude vector to myAtt.

e Also, if itis the first iteration (counter equals 0), store
your attitude in initAtt. Remember that attitude is
stored in the sixth, seventh, and eighth elements of the
state array.

* This for loop contains multiple lines of code. Can you
recall the rules of bracket syntax?

‘ = * 1TH=
e durora £ |1

ZER®
ROBOTICS Code

SPHERES 1SS CHALLENGE

vold loop() {
api.getMyZRState (myState) ;
for (int 1=0; 1<3; 1++){
myAtt[i]=myState[i1+6];
if (cognte*==ﬁ)
initAtt[i]=myState[i1+6];

counter++;

H N
" MAP SAurora s;au Ill

ZER®
ROBOTICS mathVeclnner

SPHERES ISS CHALLENGE

* The first step in finding angular displacement is to
calculate the dot product between the initial and
current attitude vectors.

* To calculate the dot product, use the function

mathVeclnner. It takes the two vectors and the length
of the vectors as arguments and returns the dot
product.

e Call mathVeclnner to find the dot product of initAtt and
myAtt and store the returned float in dot.

dot = mathVeclInner (initAtt,myAtt, 3):;

, S TR
e urora s 1|y

ZER®

ROBOTICS Find the Angle

SPHERES ISS CHALLENGE

* Now we need to use our formula to find the angle between
initAtt and myAtt. Use the function acosf to find the
arccosine of dot.

 The formula requires you to divide the arccosine by the
magnitudes of the two vectors. We can skip this step
because both are attitude vectors and therefore unit
vectors, so the magnitudes equal 1.

e acosf, like all other trig functions in math.h, returns a float in
radians. The angle is easier to comprehend in degrees, so
multiply it by 180/m.

 We want to monitor angular displacement, so debug angle.

angle = acosf(dot)*180/PI1;
DEBUG(("3f",angle));

Y To——— |

ZER®

ROBOTICS Conditional

SPHERES ISS CHALLENGE

* The only thing left to do is to change our “if” statement
so it is conditional on angle, not counter. Set the

attitude rate target to targetRate if the angular
displacement is less than 90°.

1f (angle<20)

apl.setAttRateTarget (targetRate) ;
else

apli.setAttRateTarget (stop);
counter++;

* Compile and run. Make sure the console is open so you
can monitor angle.

ZER®

ROBOTICS Results

SPHERES ISS CHALLENGE

* We didn’t take into account the time it takes to stop
moving, so we overshot the target angle. As an
improvement, fine tune the conditional angle so you
stop at 90°.

 But remember, versatility is everything. Your target
angle won’t always be 90° and you won’t always be
spinning at 15 deg/sec. Use your math and physics skills
to create a solution that works in every situation.

* You may find the equations on the next slides helpful.
Good luck!

, S N TTH=
e urora 55| 1 1

ZER®

ROBOTICS Motion Equations Revisited

SPHERES ISS CHALLENGE

* The five essential motion equations of translational
kinematics can be modified for their rotational
counterparts.

 Keep in mind that these motion equations are only valid
for constant angular acceleration (a).

* Remember that the subscript O indicates an initial value,
and the lack of a subscript indicates a final value.

, S TR
e urora s 1| g

ZER®

ROBOTICS Motion Equations Revisited

SSSSSSSSSSSSSSSSSSS

W -
o =
!

g_ Pt
2

1
0 = wit +—at’
2
1,
O0=uwt-—at
2

2 2
W —-w, =200

wr urora &5 |11

