SPHERES ISS CHALLENGE

Force

7, ke N
fvasa m [TorPCaoDper]| MAP Wurora (g*SL’) I I I I I




ZER®

ROBOTICS setForces

SPHERES ISS CHALLENGE

* When you set a position, velocity, or attitude target, you are
controlling forces in a closed loop system. This means that
the satellite auto-adjusts its forces to meet your target.

* |n addition to the closed functions we have covered so far,
you can directly control force with setForces. This is an open
loop control function, meaning the satellite will NOT self-
adjust its forces. You need to continuously provide new
input. On the bright side, this is very easy with loop(), and
we are used to providing continuous input.

» setForces delivers the specified amount of force as impulses
to the satellite every time the thrusters are fired. Unlike
setVelocityTarget and other functions that aim for a target
value, setForces has no target. You need to control the
amount of force delivered with your code.

-z . / T
NASA m [TorCobper] MAP @4”[’0"3 C§SL;> I I I I



ZER®

ROBOTICS The Scenario

SPHERES ISS CHALLENGE

* In this example, we will continue our quest to move to a
position target as quickly as possible.

 Open Projectl4c from the last tutorial and save it as
Project15. It should look like this:

float item([3];

float myState[l12]:;
float myPos[3]:;

float wvectorBetween[3]:
float distance;

void init() {
item[0]=0
item[1]=0.0;
item([2]=0.0;

void loop() {
api.getMyZRState (myState);
for (int i=0; i<3; i++)
myPos[i]=myState[i]:

mathVecSubtract (vectorBetween, item,myPos, 3);
distance = mathVecMagnitude (vectorBetween, 3):
if (distance>0.6)

api.setVelocityTarget (vectorBetween);

else
api.setPositionTarget (item);

* e
v durora 5.1



ZER®

ROBOTICS Recap

SPHERES ISS CHALLENGE

e Let’s recap what the code from the setVelocityTarget
tutorial does.

* Every second, we find the vector that points from our
satellite to the item and store it in vectorBetween.

* vectorBetween is really a distance vector, so we find the
magnitude and store it in distance.

e If distance is greater than 0.6 m, we set the velocity
target to vectorBetween.

* Otherwise, we set the position target to item so we
have enough time to slow down.

. 2 * 1TH=
e durora £ |1




ZER®

ROBOTICS Variable Ta rget

SPHERES ISS CHALLENGE

* vectorBetween varies directly with distance. As the
satellite approaches the target, the components of
vectorBetween approach 0.

* So, our target velocity decreases with time. We want to
use this principle for force as well. Simply change
setVelocityTarget to setForces.

e Compile and run.

if (distance>0.606)
apli.setForces (vectorBetween):;
else
api.setPositionTarget (item);

nnnnnnnnnnnnnnnn



ZER®

ROBOTICS Results

SPHERES ISS CHALLENGE

* |t takes roughly 26 seconds for the satellite to stop on
the item. Even then, the satellite adjusts itself at a very
low speed for the next few seconds.

* This is better than our setPositionTarget time of 28
seconds, but doesn’t beat our setVelocityTarget time.

* You can improve this time quite a bit by adjusting the
magnitude and conditional distance, but you may still
find it easier to use setVelocityTarget.

* You can use setForces in tandem with setPositionTarget
and setVelocityTarget, but be careful. Combining open
loop and closed loop control functions can produce
unanticipated results.

‘ = * 1TH=
e durora £ |1



