

Applied Conditionals

Goals

In this tutorial you will learn how to use **getMyZRState** in conditional statements.

Position Velocity Pointing vector Rotation rates

	My_ZR_State		
	X: 0.0	Y: 0.0	Z: 0.0
,	Vx: 0.0	Vy: 0.0	Vz: 0.0
1	Nx: 0.0	Ny: 0.0	Nz: 0.0
	ωx: 0.0	ωy: 0.0	ωz: 0.0

getMyZRState Review

Z:0.0

Vz: 0.0

Nz: 0.0

ωz: 0.0

getMyZRState retrieves the following information about the Blue satellite

> **Position** (x,y,z)

Velocity (vx,vy,vz)

(nx,ny,nz) Pointing vector

 $(\omega x, \omega y, \omega z)$ **Rotation rates**

These same values are displayed in upper right corner of the simulation window

The ZRState information is provided in an array

of 12 floats: [0] [1] [2]

> (Remember, the counting starts from 0; [3] [4] [5]

you see 0-11, not 1-12) [6] [7] [8]

[9] [10] [11]

getMyZRState [0], [1], [2] represent the x, y, and z coordinates of the SPHERES

X: 0.0

Vx: 0.0

Nx: 0.0

 $\omega x: 0.0$

Y: 0.0

Vy: 0.0

Ny: 0.0

 ωy : 0.0

Fuel Remaining: 100%

Use of getMyZRState

- You can use getMyZRState to figure out where your SPHERES satellite is relative to a specific location in the game arena
- This means you can use ZR State information instead of a counter to decide when things happen—this is very useful in the game!
- In this tutorial you will use getMyZRState information to program the following:
 If the satellite has not reached positionA, then continue to positionA
 else go to positionB

Use of getMyZRState (cont.)

- First some things to consider in the example to the right:
 - Q: How does the x coordinate of the satellite change as it moves from initial position
 (0,0.5,0) to position A (1,0,0) in the picture?
 - A: The satellite starts with x coordinate=0 and moves towards x coordinate=1
- For this example, we will use the SPHERES *x*-coordinate information to decide if the satellite has reached positionA.
- Since: (Initial position) < (Position A x-coordinate), we can compare the moving SPHERES x coordinate with positionA's x coordinate as follows:

If myZRState[0] < positionA [0], then keep moving toward positionA

Use of getMyZRState (cont.)

Ζ

- Because the SPHERES controller is not perfectly accurate, it is best to pick a target x coordinate that comes just before the point the satellite is moving toward (just before position A)
 - Example: x=0.97 is close to x=1.0
 - Pick target x = 0.97
 - This gives you .03 meters (3cm) margin for error
- Program outline:
 - If myZRState[0] < 0.97
 - Then go to position A (x = 1.0)
 - Else go to position B
- Let's get started:
- Create a new project
- Name it "Project9" and choose "FreeMode" and "TextEditor"

Declare variables and arrays

- Create the following variables and arrays: (see tutorial on variables and arrays for help)
 - float positionA[3]
 - Set initial value to 1.0.0
 - float positionB[3]
 - Set initial value to 1,1,0
 - float myZRState[12]
 - Leave initial value blank
 - float target[3]
 - Leave initial value blank
- //This function is called once per second. //Use it to control the satellite. api.getMyZRState(myZRState); target[0] = 0.97;
- In void loop (), call **getMyZRState**, and write the information to the array **myZRState**. The myZRState information will change as the satellite moves. This information will be updated each time the loop is called, as shown.
- Assign a value to target [0]
 - Set target [0] = 0.97

Else if using myZRState

- Create an if-then statement.
- Use the condition that if the myZRState[0] is less than target[0], the code in the if statement will be executed.
- You will get the following statement:

```
If myZRState[0] < target[0]</pre>
```

then...

```
void loop(){
    //This function is called once per second.
    //Use it to control the satellite.

api.getMyZRState(myZRState);

target[0] = 0.97;

if (myZRState[0] < target[0]){
    }
    else{
    }
}</pre>
```


If-Then-Else using myZRState (cont.)

 Complete the conditional statement If myZRstate [0] < target [0] then

setPositionTarget to positionA

else

setPositionTarget to positionB

- Compile and simulate
 - Load settings: Tutorial _90
 - View simulation


```
void loop(){
   //This function is called once per second.
   //Use it to control the satellite.

api.getMyZRState(myZRState);

target[0] = 0.97;

if (myZRState[0] < target[0]){
   api.setPositionTarget(positionA);
}
else{
   api.setPositionTarget(positionB);
}</pre>
```

Blue satellite should move from: initial position→ positionA → positionB without pausing

If-Then-Else using myZRState (cont.)

- If your SPHERES did not behave as expected:
 - Troubleshooting
 - Carefully check that your program matches the one shown to the right
 - Check that you have correctly initialized your variables
 - Make any corrections and simulate again

```
void loop(){
    //This function is called once per second.
    //Use it to control the satellite.

api.getMyZRState(myZRState);

target[0] = 0.97;

if (myZRState[0] < target[0]){
    api.setPositionTarget(positionA);
}
else{
    api.setPositionTarget(positionB);
}</pre>
```


Review

Congratulations! You have learned how to use getMyZRState in conditional statements in your programs!

Position Velocity Pointing vector Rotation rates

	My_ZR_State			
1	X: 0.0	Y: 0.0	Z: 0.0	
/	Vx: 0.0	Vy: 0.0	Vz: 0.0	
•	Nx: 0.0	Ny: 0.0	Nz: 0.0	
•	ωx: 0.0	ωy: 0.0	ωz: 0.0	

