
Build	it	Up	and	Break	it	Down	Activity	(30-40	minutes)-Zero	Robotics	

1. During	the	phase	of	the	program	where	basic	programming	theories	are	being	introduced	(You	
Have	Nothing	to	SPHERE,	Getting	into	CS,	etc.),	students	gain	practice	understanding	why	and	how	
their	program	needs	to	be	written	in	a	detailed	and	organized	manner,	so	that	it	works	properly	
when	it	is	tested.	

2. Split	the	class	into	two	even	groups	(4	if	there’s	a	large	class)	with	ideally	4-6	kids	in	each	group.	
Give	each	group	a	box	(or	kit)	of	parts	(Lego’s,	K’Nex,	Lincoln	Logs,	blocks,	etc.)	that	have	exactly	
the	same	parts	(color,	shape,	size,	etc.)	and	quantities	of	such	between	them.	

3. Have	the	groups	work	in	separate	rooms	if	possible,	or	on	opposite	sides	of	the	classroom.	If	
they’re	in	the	same	room,	they’ll	need	to	work	a	bit	more	quietly	and	discretely.	Each	group’s	task	
is	to	build	a	model	(using	ONLY	those	parts	in	their	kits)	that	the	other	team	will	be	able	to	
replicate.	The	students	should	be	told	that	they	have	time	limits	for	what	they’re	doing,	but	that	
they	should	be	creative	and	build	something	unique	and	interesting	that	the	other	team	can	
recognize	and	identify.	The	model	shouldn’t	be	too	complex	due	to	the	time	constraints.	

4. Students	should	be	given	10-15	minutes	to	decide	on	and	build	their	models,	plus	write	out	
detailed,	step-by-step	instructions	for	the	other	team	to	follow	and	be	able	to	successfully	
duplicate	their	model	that	looks	EXACTLY	the	same	as	the	original	model	that	was	built.	Remind	
teams	that	success	in	this	exercise	relies	on	if	the	other	team	can	successfully	follow	their	team’s	
instructions	and	build	the	model	they	described	correctly.	

5. In	the	first	part,	students	need	to	decide	what	their	model	should	be	(it	should	be	something	
recognizable/familiar,	examples	include	a	house,	a	logo,	a	car,	a	geometric	shape,	etc.).	Once	
they’ve	decided,	the	team	needs	to	build	that	model	and,	along	the	way,	write	detailed,	organized,	
step-by-step	instructions	for	the	other	team	to	follow	so	they	can	then	build	their	model	too.	Sizes,	
shapes,	and	colors	are	all	relevant	elements	that	teams	need	to	include	in	their	descriptions.	

6. Once	the	models	are	done	and	instructions	completed,	take	pictures	of	the	completed	models	so	it	
can	be	verified,	at	the	end	of	the	2nd	part,	that	teams	successfully	followed	the	instructions	and	
built	the	other	team’s	model	correctly.	Have	teams	then	switch	places.	

7. Within	the	time	limit,	the	teams’	jobs	now	are	to	read	the	other	teams’	directions	and	successfully	
build	the	model	they	intended	to	be	built.	Again,	success	depends	on	the	accuracy	of	the	sizes,	
shapes,	and	colors	of	the	original	models	vs.	what	the	other	team	builds.		

8. After	the	time	limit	is	up,	have	teams	compare	the	pictures	that	were	taken	to	the	models	that	
were	built.	Did	the	teams	get	it	right?	Were	the	instructions	provided	adequate?	

9. Have	teams	discuss	what	happened.	Sample	Questions:	How	much	detail	was	needed	to	get	the	
builds	100%	correct?	Were	the	instructions	the	teams	wrote	adequate?	Was	more	detail	needed?	
What	kinds	of	details	(if	any)	were	left	out?	What	assumptions	did	the	students	make	while	writing	
their	instructions	that	the	other	teams	may	not	have	made?	How	did	this	affect	their	final	results?	

10. Now,	ask	the	students	how	these	ideas	translate	to	coding.	Sample	Questions:	What	assumptions	
or	“initial	conditions”	are	set	for	them	in	the	IDE?	What	variables	are	used	across	the	board,	if	any?	
How	does	the	level	of	detail	they	use	affect	what	their	code	ultimately	does	and	how	their	device	
performs?	


