MS SUMMER PROGRAM 2016

Zero Robotics Middle School Summer Program 2016

SpySPHERES

Game Manual
Ver.1.3

Zero Robotics Middle School Summer Program 2016: SpySPHERES Game Manual: Page 1 of 27

FWD: FWD: FWD: URGENT! ALL EMPLOYEES NEEDED!

Hello employees of BLU Industries, I have an interesting opportunity for all of
you! One of NASA’s old satellites has malfunctioned and spontaneously broken
into pieces in low Earth orbit. It was holding very valuable data. NASA has
stated that any company that wishes to try their luck at gathering this data is
free to do so. This represents a huge opportunity for BLU!

In order to be the first company out there, we’ve outfitted our HYPER-SPHERE™
with the newest propulsion and control systems from R&D, products of
trillion-dollar research. It is powered by solar energy, so it can recharge
whenever it’s under the sun.

Members of the BLU family, I'm calling on you today to develop an autonomous
piloting system for the HYPER-SPHERE™, so that when it reaches the NASA
satellite it will be able to collect as much data as possible as quickly as
possible. While doing so, your pilot should also be wary of how much energy it
has, recharging from the sun or from the strewn about batteries of the broken
satellite as needed.

Thank you for your work,
Alvar Saenz-Otero
BLU CEO

RE: FWD: FWD: FWD: URGENT! ALL EMPLOYEES NEEDED!

Hello again employees, the game has changed. I have just received news
that RED corporation, led by their CEO Evil Alvar, have made their own plans to
recover the orbiting data. Were it any other company, I would not be worried,
as our HYPER-SPHERE™ would easily get there first. Unfortunately, however, RED
have their own MEGA-SPHERE™, and I have a hunch that they too will be pulling
out their newest technology for this venture. It looks as though we’ll have
some competition.

There is, however, a silver lining to this new development. If our R&D
department can get their hands on information about RED’s new transportation
technology, especially pictures, it would be even more valuable to us than
NASA’s data. Thankfully, the HYPER-SPHERE™ is already equipped with a camera,
although it isn’t powerful enough to take pictures without light from the sun.

Therefore, your job has expanded. While collecting the debris is still
important, your pilot should focus on gaining intel about our competitor’s
satellite. We also fear that RED will attempt to take pictures of us, so
additionally work to prevent that as best you can.

Let’s get that tech!
Alvar Saenz-Otero

BLU CEO

- * R P B -
Nir 5 @@= wom o TN Cesa §

Zero Robotics Middle School Summer Program 2016: SpySPHERES

Table of Contents

1. Game Overview
Figure: Game Overview
1.1 Game Layout
Figure: Interaction Zones
Mechanic Summary Table
1.2 Satellite
1.2.1 ZR User API
1.2.2 Time
1.2.3 Fuel
Table: Fuel Allocation
1.2.4 Code Size
1.2.5 Initial Position
Table: SPHERES Satellite Deployment Locations
1.2.6 Player ID
1.2.7 Noise

1.3 Gameplay

1.3.1 Energy
1.3.2 Light and Dark Zones

Table: Light and Dark Zone Properties
Figure: Light & Dark Zones
1.3.3 ltems:
Figure: Iltem Collection
Figure: 3D Item Locations & Types
Table: Item Locations
1.3.4 Picture Taking
Figure: Reasons to Fail a Picture
Figure: Conditions for a Successful Picture
1.3.5 Uploading Pictures
1.3.6 Scoring Summary
1.3.7 End of game
2. Tournament
Table: Tournament Key Dates 2016
2.1 Regional Simulation Competition
2.1.1 Competition Periods
2.1.2 Submitting Code
2.1.3 Competition Format — Regional Competition
2.2 Collaboration for ISS Finals
2.3 1SS Final Competition
2.3.1 Overview and Objectives
2.3.2 Competition Format

R TR AT LA A

*
Hir ——g 4
M 5= Q== 2w -~

Game Manual: Page 2 of 27

casIs esa @

Zero Robotics Middle School Summer Program 2016: SpySPHERES

Figure: ISS Competition Bracket
2.3.3 Scoring Matches
3. Season Rules
3.1 Tournament Rules
3.2 Ethics Code
4. ZR User API
Revision History

* _
nrsration

Ui S =" ddurora

R TR AT LA A
e

s/
f/'\

Game Manual: Page 3 of 27

CASIS

esa &

Zero Robotics Middle School Summer Program 2016: SpySPHERES Game Manual: Page 4 of 27

ZRMS 2016 Game Manual

1. Game Overview
Figure: Game Overview

0.64,-0.80 Gameplay Area
aX j = (0.64,0.80)
¥=0
&
=
X=0
=
|
(-0.84,-0.80) Out of Bounds it
>

Diagram not to scale

Matches of SPY SPHERES will be played between two SPHERES satellites, controlled by
programs written by two separate teams. Each team will compete to have the most points when
the round time is over. Each round lasts 180 seconds. Points may be generated by taking
pictures of the other satellite and uploading them, or by collecting one of the score-generating
items (representing the pieces of the NASA satellite) spread across the playing field.

In this game, there are dynamic Light and Dark zones that have various impacts on the
satellites. These represent how a satellite in space, in Low Earth Orbit, is half of the time
illuminated by the sun and the other half in Earth’s shadow (also called eclipse).

Additionally, real space satellites have small amounts of power available for all of their
equipment. Therefore, in SpySPHERES, each satellite has a finite amount of energy for any
game actions. Real satellites launch with batteries and use solar panels to replenish their

A

- * [P -
i 5. @@= o o O Cesa @

Zero Robotics Middle School Summer Program 2016: SpySPHERES Game Manual: Page 5 of 27

energy when exposed to direct sunlight. In SpySPHERES, energy can be generated by being in
the Light Zone or by picking up energy items.

Pictures cost energy to take, and can only be successfully taken when the target is in the Light
Zone.

The Light and Dark zones will change positions over the course of the round.

Lastly, there are mirror items which, when deployed, prevent the user from taking pictures but
also reflect any pictures your opponent takes back at them, making them worthless.

1.1 Game Layout

The Zero Robotics Middle School Summer Program 2016 competition will be conducted in
simulation.

The game is played in an area called the Interaction Zone. If players leave the Interaction Zone,
they will be considered out of bounds. The location of the SPHERES is measured from the
center of the satellite.

The Interaction Zone for the game has the following dimensions:

X: [-0.64: +0.64]

Y: [-0.8: +0.8]

Z: [-0.64: +0.64]

Satellites that go out of these limits will be stopped from moving further out of bounds.

AR TN EATLIA A

- * . 7 G
Hn ==y Yurns DAurora e/ =, esa @

3 CASIS

Zero Robotics Middle School Summer Program 2016: SpySPHERES Game Manual: Page 6 of 27

Figure: Interaction Zones

0.84,-0.80) Interaction Zones
)((0.64,0.80)
¥Yul
[
X=0 =
\4.64,-0.50) Out of Bounds 1_{]'64'0'3:]‘(

Diagram not to scale

The arena is a plane with only X and Y cardinal dimensions. The light and dark each take up
either the negative or the positive half of the Y-axis, and switch positions. There is more info on
the light and dark zones in 1.3.2. There is also more information about the three Score+ items,
four Energy Packs and two Mirror types in 1.3.3.

1.2 Satellite

Each team will write the software to command a SPHERES satellite to move in order to
complete the game tasks. A SPHERES satellite can move in all directions using it's twelve
thrusters.(For the middle school game, the ability to move to a different Z-coordinate has been
disabled.) The actual SPHERES satellite, like any other spacecraft, has a fuel source (in this
case liquid carbon dioxide) and a power source (in this case AA battery packs.) These
resources are limited and must be used wisely. Therefore, the players of Zero Robotics are
limited in the use of real fuel and batteries by virtual limits within the game. This section
describes the limits to which players must adhere to wisely use real SPHERES resources.

A TN AT LR

== *) ;)
RIT S5 Verw" QAurora &/ _—, esa @

3 CASIS

Zero Robotics Middle School Summer Program 2016: SpySPHERES Game Manual: Page 7 of 27

1.2.1 MS ZR 2016 User API

Game specific functions, along with the standard ZR User API functions, are provided both in
Section 5 of this manual and at the following link:.
http://zerorobotics.mit.edu/tournaments/22/info/116/0/

1.2.2 Time

Each round lasts 180 seconds. After 180s scores will be final and compared.

1.2.3 Fuel

Each player is assigned a virtual fuel allocation of 60 seconds, which is the total sum of fuel
used in seconds of individual thruster firing. Once the allocation is consumed, the satellite will
not be able to respond to SPHERES control commands. It will fire thrusters only to avoid leaving
the Interaction Zone or colliding with the other satellite. Any action that requires firing the
thrusters such as rotating or moving consumes fuel.

Table: Fuel Allocation

Fuel Allocation [s] 60s

1.2.4 Code Size

A SPHERES satellite can fit a limited amount of code in its memory. Each project has a specific
code size allocation. When you compile your project with a code size estimate, the compiler will
provide the percentage of the code size allocation that your project is using. Formal competition
submissions require that your code size be 100% or less of the total allocation. To check your
project’s code size —open your projcet in the IDE then select “Code Size Estimate” under the
simulation tab as shown in the figure below. The percent usage will be displayed in the Log.

Figure: How to Check Project Code Size

(€ Zero Robotics | AboutzR- Toumaments~
File ~ Edit ~ Simulate »
[f——— . [e
comple PHERES Control
3 ontrols
Pages Codesize Estimate %
—_— Si ebug
Log RIS Variables
Submit Logic
B Math

AR TN EATLIA A

o - * N ; g
Mir s= e DAurora e/ op esa @

3 CASIS

http://zerorobotics.mit.edu/tournaments/22/info/116/0/

Zero Robotics Middle School Summer Program 2016: SpySPHERES Game Manual: Page 8 of 27

1.2.5 Initial Position

Teams should write code assuming that their player is the Blue SPHERE. It is not necessary for
teams to account in their code for the possibility of being either red SPHERES or blue
SPHERES. This adjustment will be made automatically.

The Blue Sphere starts at the X, Y, Z of [0.4,-0.6, 0.0].
The Red Sphere starts at the X, Y, Z of [-0.4,-0.6, 0.0].

Table: SPHERES Satellite Deployment Locations

Blue
X [m] 0.4
Y[m] -0.6
Z[m] 0.0

Red
X [m] -0.4
Y[m] -0.6
Z[m] 0.0

The satellite radius is 0.11m, but satellite position relative to game features is determined by the
location of the center of the satellite.

1.2.6 Player ID

Users will identify themselves as “playerID = 0” and opponents as “playerID = 1” for all games,
whether or not they are the red SPHERES satellite or the blue one.

1.2.7 Noise

It is important to note that although the two competitors in a match will always be performing the
same challenge and have identical satellites, the two satellites may be affected by random
perturbations in different ways, resulting in small or even large variations in score. This is fully
intended as part of the challenge and reflects uncertainties in the satellite dynamic and sensing
models. The best performing solutions will be those that prove to be robust to these variations
and a wide variety of object parameters.

1.3 Gameplay

In order to be victorious over the opposing team, each satellite should make use of the
consumable items and their camera in order to take pictures of the opponent and gain points, all
while managing energy, fuel and their position in light or darkness.

AR TN EATLIA A

o - * N ; g
Mir s= e DAurora e/ op esa @

3 CASIS

Zero Robotics Middle School Summer Program 2016: SpySPHERES Game Manual: Page 9 of 27

1.3.1 Energy

Energy is the most prohibitive resource the satellites utilize. Both players start with 5.0 energy at
the start of the game, which is also the maximum energy a satellite can have. If the satellite is in
the light zone, it gains 0.5 energy every second. To maneuver the satellite, 0.15 energy is used
per 1 second of fuel used. Other activities that cost energy include taking pictures (1.0 energy
when camera is on) and calling float getPicPoints () (0.1 energy when the camera is
on) as described later.

e The satellites can check how much energy it has left by calling the game function

float getEnergy ()
e The satellite may also check the energy of the opponent by calling f1oat
getOtherEnergy ().

1.3.2 Light and Dark Zones

The Light and Dark Zones affect picture taking and energy recharge. Here is a table with their
properties:

Table: Light and Dark Zone Properties
Picture Can be Taken of Me |Does Energy Recharge
Light Zone Yes Yes
Dark Zone No No
Light and Dark Zones switch positions after 60 seconds and 150 seconds of game time

AR TN EATLIA A

II I i p SSL . @ =" worz ;.’“/ CASIS esa @

Zero Robotics Middle School Summer Program 2016: SpySPHERES Game Manual: Page 10 of 27

Figure: Light & Dark Zones

0.64,-0.80 Gameplay Area
A% j i (0.64,0.80)
Y=0
&
=
x=0
=
|
(-0.64,-0.80) SIS (-0.64,0.80)
>

Diagram not to scale

The positive Y sector starts out in the Dark Zone and the negative Y section starts out in the
Light Zone. At 60 seconds and 150 seconds into the game, the Light Zone and the Dark Zone
will switch position.

Light in all “Out of Bounds” areas are the same as the adjacent in-bounds areas. If a satellite
goes “Out of Bounds” in the dark zone and runs out of energy, it will be stuck “Out of Bounds”
until the light zone switches to the satellite’s side of the game grid. Once the satellite’s energy
is recharged the satellite will be able to resume normal operations.

e The user can call the function int getLightSwitchTime () to
determine how long, in seconds, until the zone switches.

1.3.3 ltems:

There are three types of items scattered around the interaction zone: Energy Packs, Score+
Iltems, and Mirrors. Each has a unique numeric identifier from 0 to N-1, where N is the number
of items.

There are nine total items (0-8), with all three item types. Each of them may only be used once,
and they do not regenerate.

A TN AT LR

Nir <& Ve Aurora o &\ fesa @

alMis N CASIS

Zero Robotics Middle School Summer Program 2016: SpySPHERES Game Manual: Page 11 of 27

£ getitom (K locto | EEITERED

e You can find item locations using the function: void

getItemLoc (float pos[3], int itemID)
- -
e Call the game function La3EiEa bool checkHaveItem (itemID)to

determine whether the item is held by nobody, you, or your opponent.

/ getitem 3 locto | EEEETEED |

e Call the game function
item id) to obtain the location of the item.

float[3] getItemLoc (int

Item Types:

e Energy Pack - Upon pickup this item is instantly used. It refills the satellite to its
maximum energy level, 5.0.

e Score+ - Once picked up this item is also used immediately. It adds 1.5 to the satellite’s
score.

e Mirror - Unlike the other two items, this is simply held on to once picked up. Once it is
deployed, the holder has 24 seconds during which they cannot take pictures, but any
pictures the opposing satellite takes of them will be worth no points in 2D. To clarify, the
mirrors prevent pictures from being taken. Some related functions are:

void useMirror () - Deploys a mirror.

/1 get num mirrors held

int getNumMirrorsHeld () - Returns the number of
mirrors the user has.

Item Pick Up:
In order to collect an item, the center of the user’s satellite must be no greater than 0.05 meters
away from the item and it must be moving at slower than .01 meters per second.

- * — P -
Mir <t @@= odwor o/ s (esa &

=L P2 CASIS

e

Zero Robotics Middle School Summer Program 2016: SpySPHERES Game Manual: Page 12 of 27

Figure: Item Collection

!
SPHERE

Item Collection

Apos < 0.05m
Vel < 0.01m/s

Figure: Item Locations & Types

‘XU.M.-D.EU':I Gameplay Area SR
¥=0
&
O
x=0
O
O
(-0.64,-0.80) O s i (0 MME-}Y
Diagram not to scale
Table: Item Locations
ID # ltem Location
0 Energy Pack (0.25,-0.4)
1 Energy Pack (-0.25,-0.4)
2 Energy Pack (0.25,0.4)

A TN AT LR

L * [
i ss @= dwom

/i‘/ CASIS -esa @

Zero Robotics Middle School Summer Program 2016: SpySPHERES Game Manual: Page 13 of 27

3 Energy Pack (-0.25,0.4)
4 Score+ (0.0, 0.6)
5 Score+ (0.4, 0.6)
6 Score+ (-0.4, 0.6)
7 Mirror (0.6,-0.7)
8 Mirror (-0.6, -0.7)

1.3.4 Picture Taking

The way to score the largest possible amount of points is by taking pictures of the other satellite.
There are multiple requirements for taking a picture:
1. The user satellite must be facing the opposing satellite. (The angle between the
satellite's facing vector and the vector between the positions of the two satellites is within
0.5 radians.)
o The attitude needed to point to the other satellite can be found by calling the

[\ getattio other | TR |

function:
AttToOther[3])

void getAttToOther (float

o You can check using the function:
2. The opposing satellite must not be in the Dark Zone (that is, it must be in the Light
Zone).

bool isFacingOther ()

bool
checkInLight (int Player) me player=0; other player=1

The user satellite must have at minimum 1 energy.

4. The user satellite’s camera must be on.

o You can check using the function:

w

o You can check using the function:
5. The user must not have an active mirror item.

bool isCameraOn()

o You can check using the function: bool useMirror ()

6. The user’s satellite must be at least 0.5m away from the opposing satellite.

7. The user must call the function float takePic ().

o The function float takePic () will then take a picture if all of the
conditions are met. Regardless of whether the picture was successfully taken,
takePic () will consume 1 energy and shut down the camera for 3 seconds
when it is called.

CASIS

- * —_— P -
T =5 @@= wom o s (esa &

A

Zero Robotics Middle School Summer Program 2016: SpySPHERES Game Manual: Page 14 of 27

o The function float takePic () will return O if picture-taking was
unsuccessful, and the point value of the picture otherwise. Every picture, whether
successful or not, adds 0.01 points to the user’s score as a tiebreaker.

The amount of points each picture is worth is determined by the distance between the two
satellites when the picture is taken. It follows this formula:

points = 2l 0.1 / (distance - PHOTO_MIN_DISTANCE + 0.1)

Where PHOTO_MIN_DISTANCE is 0.5. If the opposing satellite is using an active mirror, the
amount of points the picture is worth will be zero.

e The function float getPicPoints () is available to check the points a
picture will be worth before taking it. Calling it costs 0.1 energy, but does not disable the
camera. Note that this function can sense whether or not the opponent has deployed a

mirror.
Figure: Reasons to Fail a Picture
0.64,-0.80 Failed Pictures
AX 1" (0.64,0.80)
¥=d
= Light Zone Dark Zone
Reasons for no pletures:
« Mol facing opponent
s Camera off
= Opponent in Dark Zona
&« Having a mirror active
« Opponent having a mirror active
* Mot enough enengy
H=0
[}
-0.64,0.80
(-0.64.-0.80) Out of Bounds (.3 Y
Diagram not to scale
III-- ,* innnation @A mmn;::’w.:‘w "q esa
]| rgﬁL_ﬁ ¥ teaing Aurora P CASIS .

Zero Robotics Middle School Summer Program 2016: SpySPHERES Game Manual: Page 15 of 27

Figure: Conditions for a Successful Picture

0.64,-0.80 Good Pictures
aX et (0.64,0.80)
Y=0
- Light Zone
Dark Zone o ._.
Reasons for good pictures: # 4 . O
- Fao pponent 3 = e
I -
N
¥=0 —
5]
O
(-0.64,-0.80) Out of Bounds {_ﬂ'm'ﬂﬂ:}Y
Diagram not to scale
1.3.6 Scoring Summary
Method Point Value
Attempting to Take a Picture (Valid or Not) 0.01
Taking a Valid Picture 2.1 + gy per picture
Score ltems 1.5 per item

Whoever is closer to the center/origin of the playing field at game end wins in the event of a tie.

A TN AT LR

fp— L‘-% l — N At
i 5. @@= o o O Cesa @

Zero Robotics Middle School Summer Program 2016: SpySPHERES

1.3.7 End of game

Game Manual: Page 16 of 27

The game ends after 180 seconds. Whichever team has more points wins. In the unlikely case
of a tie, the satellite that is closer to the origin wins.

2. Tournament

A Zero Robotics tournament consists of several phases called competitions. The following table
lists the key deadlines for the 2016 tournament season:

Table: Tournament Key Dates 2016

Session 1

June 13 (Mon) Start of Session 1 Week 1
June 20 (Mon) or June 21 (Tues) Field Day Week 2
June 30 (Thu), 5:00 pm local time Practice Code Deadline Week 3
July 8 (Fri), 5:00 pm, local time Regional Code Deadline Week 4
July 14 (Thu), 5:00 pm, local time ISS Code Deadline Week 5
Mid-Aug ISS Finals

July 5 (Tues) Start of Session 1 Week 1
July 11 (Mon) or July 12 (Tues) Field Day Week 2
July 22 (Fri), 5:00 pm local time Practice Code Deadline Week 3
July 29 (Fri), 5:00 pm, local time Regional Code Deadline Week 4
Aug 4 (Thu), 5:00 pm, local time ISS Code Deadline Week 5
Mid-Aug ISS Finals

.l*

QAurora

AR TN EATLIA A

Zero Robotics Middle School Summer Program 2016: SpySPHERES Game Manual: Page 17 of 27

2.1 Regional Simulation Competition

2.1.1 Competition Periods
The program starts with two phases of regional simulation competition:

e Practice Regional Competition At the end of Week 3 of the summer program, teams
will submit their code and a competition will be run. The results of this competition are
not official and are intended to guide teams in improving their code during Week 4. The
submission deadline is 5 PM local time on the Thursday/Friday of Week 3. (See
Tournament Key Dates Table for date specific to your session.)

e Regional Competition At the end of Week 4 of the summer program, teams will submit
their updated code and a competition will be run. The results of this competition
determine the regional 1%, 2" and 3" place champion. The submission deadline is 5 PM
local time on the Thursday/Friday of Week 4. (See Tournament Key Dates Table for date
specific to your session.)

2.1.2 Submitting Code

To enter a program in a competition the team must use the Submit tool located under the
Simulate menu on the IDE page of the Zero Robotics website. You may change your
submission as many times as you like before the submission deadline, but only the last program
that has been submitted before the deadline will be used. No programs submitted after the
deadline will be accepted unless the Zero Robotics staff determines that emergency
circumstances made timely submission impossible.

2.1.3 Competition Format — Regional Competition

The regional competition will be a round robin, with every team playing every other at least
once. Each team will play as close as possible to half its matches with each satellite (blue and
red). The team with the most wins will be the champion. In the event of a tie, the team that won
the most head-to-head matches against the other tied team(s) will be the champion. If this
procedure fails to resolve a tie, the tied team with the highest total score (that is, the scores from
all of its matches added together) will be the champion. The results of regional competitions will
be released by 8 AM ET on the Monday after the competition submission deadline. The Zero
Robotics team will release them earlier if possible. All regional results may not be released
simultaneously.

2.2 Collaboration for ISS Finals

During the first several days of week 5 of the summer program all teams in each region will have
an opportunity to collaborate to try to improve their 1% place regional winner’s code prior to ISS
submittal deadline. Teams from the same region are encouraged to try to beat the regional
winner’s code and then share their solution with the regional winner. The regional winner will
submit the final code from their region for the ISS Competition. The submission deadline is 5pm
on the Thursday of Week 5.

AR TN EATLIA A

o - * N ; g
Mir s= e DAurora e/ op esa @

3 CASIS

Zero Robotics Middle School Summer Program 2016: SpySPHERES Game Manual: Page 18 of 27

2.3 ISS Final Competition

The final code submitted by the regional winner from each region will compete in the ISS finals.
The finals will take place aboard the International Space Station with live video transmission. All
teams will be invited to watch the live broadcast.

2.3.1 Overview and Objectives

Running a live competition with robots in space presents a number of real-world challenges that
factor into the rules of the competition. Among many items, the satellites use battery packs and
CO, tanks that can be exhausted in the middle of a match, and the competition must fit in the
allocated time. This section establishes several guidelines the Zero Robotics team intends to
follow during the competition. Keep in mind that as in any refereed competition, additional
real-time judgments may be required. Please respect these decisions and consider them final.

Above all, the final competition is a demonstration of all the hard work teams have put forward
to make it to the ISS. The ZR staff’s highest priority will be making sure every team has a
chance to run on the satellites. It is also expected that the competition will have several "Loss
of Signal" (LOS) periods where the live feed will be unavailable. We will attempt to make sure
all teams get to see a live match of their player, but finishing the competition will take priority.

To summarize, time priority will be allocated to:

1) Running all submissions aboard the ISS at least once

2) Completing the tournament bracket

3) Running all submissions during live video
We hope to complete the tournament using only results from matches run aboard the ISS, but
situations may arise that will force us to rely on other measures such as simulated matches.

2.3.2 Competition Format

A total of 12 teams will compete on ISS during the Middle School ISS Final Competition this
year. The twelve teams will be divided into 2 conferences for the ISS competition.

Each conference will include 2 brackets of 3 teams each (as shown in Figure 9). Each bracket
will play 3 matches in round-robin style: alliance A vs. B, Bvs. C, and C vs. A.

After the round-robins are complete, there will be a winner of each bracket (shown as BR1, BR2
in Figure 9.) The following rules determine the winner:

1. The alliance with the most wins advances
2. If alliances are tied for wins, the alliance with the highest total score advances
3. If scores are tied, simulation results will be used to break the tie

A single semi-final match between the top 2 bracket winners in each conference will determine
the conference winners.

AR TN EATLIA A

o - * N ; g
Mir s= e DAurora e/ op esa @

3 CASIS

Zero Robotics Middle School Summer Program 2016: SpySPHERES Game Manual: Page 19 of 27

The winning alliance from each conference will play a single match to determine the Zero
Robotics ISS Champion. The losing alliance will be awarded 2" place.

Conf. A Semi Finals

Bracket A-1 #1vs #2
Sonfersnes States 1,2,3 #2vs #3 | » Bracket A-1 winner
A #3 vs #1
s Y\S,V P,
Bracket A-2 #4vs #5 [Bracket A-2 winner
States 4,5,6 #5vs #6
#6 vs #4 Final Match
— Conf. A winner
Vs
= :
g{:t:‘:*; gg r——— Conf. B Semi Finals S
Confeérence ﬁg if;#’;g — Bracket B-1 winner
Vs, —
Bracket B-2 #10vs #11 —— Bracket B-2 winner
States 10,11,12 |#11 vs #12
#12 vs #10

Figure: ISS Competition Bracket

Definition: Successful Match

Definition: Simulated Match

Both satellites move correctly to initial positions

Both satellites have normal motion throughout the test
Both satellites return a valid score
Neither satellite expends its CO, tank during a test run

In advance of the competition, the ZR Team will run a simulated round robin competition
between all participating teams. The results from matches in this competition will be used in
place of ISS tests if necessary (see below.) The results of a simulated match will only be
announced if they are used in the live competition.

2.3.3 Scoring Matches

If the match is successful, the scores will be recorded as the official score for the match. If the
first run of a match is not successful, the match will be re-run, time permitting. If the second run
of a match is not successful, the results from a simulated match will be used.

- -* & N
U SHL @“;-;wm
{ i\ 3

A TN AT LR

Aurora &/ o, esa @

3 CASIS

Zero Robotics Middle School Summer Program 2016: SpySPHERES Game Manual: Page 20 of 27

3. Season Rules

3.1 Tournament Rules

All participants in the Zero Robotics High School Tournament 2016 must abide by these
tournament rules:

The Zero Robotics team (MIT / ILC / Aurora) can use/reproduce/publish any submitted
code.

In the event of a contradiction between the intent of the game and the behavior of the
game, MIT will clarify the rule and change the manual or code accordingly to keep the
intent.

Teams are expected to report all bugs as soon as they are found.
o A‘“bug”is defined as a contradiction between the intent of the game and
behavior of the game.
The intent of the game shall override the behavior of any bugs up to code freeze.
Teams should report bugs through the online support tools. ZR reserves the right
to post any bug reports to the public forums (If necessary, ZR will work with the
submitting team to ensure that no team strategies are revealed).
Code and manual freeze will be in effect 3 days before the submission deadline of a
competition.
o Within the code freeze period the code shall override all other materials,
including the manual and intent.
o There will be no bug fixes during the code freeze period. All bug fixes must take
place before the code freeze or after the competition.

Game challenge additions and announcement of TBA values in the game manual may

be based on lessons learned from earlier parts of the tournament.

3.2 Ethics Code

The ZR team will work diligently upon report of any unethical situation, on a case by
case basis.

Teams are strongly encouraged to report bugs as soon as they are found; intentional
abuse of an unreported bug may be considered as unethical behavior.

Teams shall not intentionally manipulate the scoring methods to change rankings.
Teams shall not attempt to gain access to restricted ZR information.

We encourage the use of public forums and allow the use of private methods for
communication.

Vulgar or offensive language, harassment of other users, and intentional annoyances
are not permitted on the Zero Robotics website.

Code submitted to a competition must be written only by students.

Players may not access the implementation instance of the game or modify any
variables of the object. In particular, the api and game objects should not be duplicated
or modified in any capacity.

AR TN EATLIA A

SEIL Yorn” DAurora e/ =, esa @

3 CASIS

Zero Robotics Middle School Summer Program 2016: SpySPHERES

Game Manual: Page 21 of 27

e Simulation requests may only be done manually via the website interface, API calls for

simulation are not allowed (even if doable).

4. ZR User API

The following reference table explains how to use common API and game functions for the

SpySPHERES game.

SPHERES Controls APl Functions* These functions used to control a SPHERES

satellite in Zero Robotics. These functions do not change from game to game.

Note for teams using the text editor: All SPHERES control functions except DEBUG are

accessed as members of the api object. In order to use these functions, use the syntax

api.function(arguments). For example:
api.setPositionTarget(mypos); //instructs the SPHERE to move to mypos

Name Description
NOTE: This function | Moves the player’s satellite to the given x, y, rm {m E ‘
is only available for | @nd z coordinates. . :
use with the
graphical editor
void Moves the player’s satellite to a point of your o PositionTa
. . . rget | -Select-- - |
setPositionTarget choice. You can select a point by creating a _
three element array, where each element
(float posTarget[3]) .
represents an x, y, or z coordinate.
void Rotates the player’s satellite to face along A AftitudeTarget Mml
setAttitudeTarget(’;r.\e >;., Y, bor z axi:. Yotuhcan slelect tthe -
irection by creating a three element array,
float attTarget[3]) Y 9 y
where each element represents the x, y, or z
unit vector of the direction you want to face.
For more information, see the More Simple
Arrays and setAttitude Target Function
tutorial on the ZeroRobotics website.
void getMyZRState(| Retrieves the state of your SPHERE A My W Select - 1
float myState[1 2]) (location, velocity, attitude, and angular - .
velocity). The state will be stored in a twelve
element array that you create beforehand.
After calling this function, the first three
elements of your array will hold the x, y, and
z coordinate of your SPHERE's location; the
next three elements will hold the x, y, and z
Mir . @= o : esa @
beamin urora L
II ;‘.SlE“—..\ ¥ center” R = CAS51S

A

Zero Robotics Middle School Summer Program 2016: SpySPHERES

Game Manual: Page 22 of 27

components of the velocity; the next three
elements will hold the x, y, and z
components of the attitude vector; and the
final three elements will hold the x, y, and z
components of the angular velocity.

void
getOtherZRState(
float otherState[12])

Same as getMyZRState but gets the state of
the opponent’s satellite.

A [Other

: ﬂ --Select-- ~ I

unsigned int
getTime()

Returns the time (in seconds) elapsed since
the beginning of the game.

DEBUG((“Some
text!”))

Prints the supplied text to the console. If
you are coding in the text editor, do not type
api. before this function and make sure to
use double parenthesis.

*DEBUG is found in the Debug section, not SPHERES Controls, and it is not an API function

Game Specific Functions- SpySPHERES MS 2D

The functions in the table below are specific to the game SpySHERES MS 2D

Note for teams using the text editor: All game functions are accessed as members of the game
object. In order to use these functions, use the syntax game.function(arguments). For example:
game.takePic(); //instructs the game to take a picture

SpySPHERES MS - Pictures

Name Description
float takePic() Attempts to take a picture of the other satellite
from its current position and disables the camera
for 3 seconds. whether successful or not. Costs
1.0 energy.
Returns the number of points that the picture
taken is worth.
void Returns the x, y, z components of the attitude
getAttToOther(roat vector needed to point the players SPHERES
camera toward the opponent satellite from its
AttToOther[3]) current position. The attitude vector is stored in a
3 element array of your choice.
bool Check if the players SPHERES camera is facing
isFacingOther() the other satellite. Returns true if the players
SPHERES camera is facing the other satellite
within tolerances. Return false otherwise.
I I I - - .* inmeation @A " "'”"::f”’“"”” esa
== @ wAurora L ’
n ,‘;5‘.5_"—--\) ¥ T CASIS @

Zero Robotics Middle School Summer Program 2016: SpySPHERES

Game Manual: Page 23 of 27

float getPicPoints()

Returns the amount of points a picture is worth if
taken immediately when the camera is on,
otherwise returns 0 when the camera is off. This
does not take a picture. This costs 0.1 energy
only when the camera is on.

bool isCameraOn()

Checks if the camera is on. Returns true if the
camera is on and is usable. Returns false if the
camera is off.

SpySPHERES MS -

ltems

NOTE: Item Id is the number assigned to a particular Item (see Game Manual for details)

Name

Description

bool
checkHaveltem(itemID);
bool
checkHaveltemOther(ite
miD);

bool
checkHaveltemNoOne(i
nt itemID)

Checks who (me/other/no-one) has a
specified item (items 0-8). Returns true if
me/other/no-one has picked up the specified
item. Returns false otherwise.

_ check have item [EMITEES

bool useMirror ()

Uses a held mirror item.
Returns true if the item was held and was
used and false otherwise.

getMirrorTimeRemainin

g0

int getNumMirrorsHeld() Returns the number of mirrors currently held
by the player that are available for use
int Returns the amount of time left on your

current mirror. Returns remaining time in
seconds is the mirror is active. Returns zero
if the mirror is not active.

/1y get mirror time remaining

void getltemLoc(float
pos[3], int itemID)

Copies the location of a given items into the
given array. Stores the location of an ltem
with the id number id in a three element
array of your choice. After calling this
function, each index in your array will hold

the x, y, or z coordinate of the ltem’s location.

A0 - 1 - Select- -

“
i <5

A TN AT LR

Aurora o/

Learning
v cunbes

CASIS

esa &

Zero Robotics Middle School Summer Program 2016: SpySPHERES

Game Manual: Page 24 of 27

int getltemType(int
itemID)

Returns what a given item does
Score item returns 0, energy item returns 1,
mirror item returns 2.

SpySPHERES MS - Light/Dark

Name Description
float getEnergy() Tells how much energy the player satellite
float getOtherEnergy() | currently has.

bool checkinLight()
bool checkinLightOther()

Returns true if the player is in the light zone.
False if not.

bool checkinDark()
bool checkinDarkOther()

Returns true if the player is in the dark zone.
False if not.

Int getLightSwitchTime
()

Determines how long until the light and dark
zone next switch. Returns the number of
seconds until the light switches.

SpySPHERES MS - Other

Name Description
float getScore() Returns player’s current score if “my” (Player
float getOtherScore() =0) is selected.

Returns opponent’s current score if “other’s”
(Player =1) is selected.

float getFuelRemaining()

Tells the player how much fuel remains.
Returns a float indicating how many seconds
of fuel remain.

API| Note Index

API Note 1: Hint: The function getEnergy() returns the amount of energy remaining. Once your
energy drops below 1.0 your will not be able to activate thrusters .
Hint: If you call this function often, you can you can allow yourself enough time to make some
changes before you run out of energy, for example move toward the light zone where you can

— *
mir 5 @

insreation
bearning

enler /.H\

A TN AT LR

QAurora &/

CASIS

esa &

Zero Robotics Middle School Summer Program 2016: SpySPHERES Game Manual: Page 25 of 27

recharge, stop the SPHERES so it won't drift out of bounds or rotate to point the SPHERE towards an
opponent so you can attempt to take pictures.

A TN AT LR

. ‘* [— " P .
T s @ Swen s (esa &

CASIS

-

Zero Robotics Middle School Summer Program 2016: SpySPHERES Game Manual: Page 26 of 27

Revision History

Revision Date

Changes Made

CASIS

1.0 5/11/16 Initial release
DRAFT
1.1 6/3/16 Updates shown in blue font. Updated Energy pack locations
and some API functions.
1.2 6/5/16 Updates shown in orange font. Corrected valid picture scoring
1.3 7/14/16 Updates shown in _ Corrected valid picture scoring
am » o Ear" sl \
it =5 @= oo £4 s Cesa @

