

GAME MANUAL
Version: Alliance-1.1

Living-microorganisms Investigation of Enceladus SPHERES Program

NOTE: Changes from the 3D to the Alliance version of the game are HIGHLIGHTED in ORANGE.

TO: All Zero Robotics Teams

RE: ATTENTION: CALLING TEAMS TO FIND LIFE ON ENCELADUS!

The SPHERES program has been tasked with a unique opportunity and urgently needs space

engineers to study the status of life on Enceladus by gathering ice samples containing

viable microorganisms. As you may have heard, scientists have discovered life on

Enceladus, a moon of Saturn. The life forms found are various forms of bacteria. We

wish to study these bacteria to see how they differ from life forms on Earth and to

understand what humans might need to be able to live on Enceladus.

The Living-microorganisms Investigation of Enceladus (LIFE) program seeks to traverse

the dangerous surface of Enceladus’s southern pole and drill ice samples. Your

priority is to secure the best samples possible.

Program the satellites to drill up samples and bring them back to the base station.

Analyze these samples in order to find the region with the richest concentration of

bacteria. Keep in mind that the beneath the surface of the southern region of

Enceladus exist large amounts of high pressure gases, therefore your drilling could

activate powerful geysers. While the SPHERES are strong enough to withstand damage

from the geysers, the force of the fast moving gases will push them off-course.

Also, be aware that we are not the only team in Enceladus. The Enceladus Vitality

Inspection and Liquefaction group also is there. Their nefarious goal is to melt the

samples to sell them as gourmet alien water! It is of paramount importance that you

collect more bacteria samples, by getting the highest concentrations possible, than

this rival team.

Good luck to all participating space engineers.

Alvar Saenz-Otero
SPHERES Lead

Ver All-1.1 1

Table of Contents
1 Game Overview 4

2 Gameplay 6
2.1 Playing Field 6

2.1.1 Initial Position 8
2.2 Microorganism Zones 8

2.2.1 3D Terrain 9
2.3 Biological Samples 10

2.3.1 Drilling / Collecting Samples 11
2.3.2 Sample Analyzers 12
2.3.3 Base Station 13

2.4 Geysers 13
2.5 Scoring 14

2.5.1 Drilling 15
2.5.2 Dropping Off Sample 15
2.5.3 Incorrect Drilling 15
2.5.4 Geyser Too Close to Base Station 15
2.5.5 Crashing into 3D Terrain 15

2.6 End of game 16
2.7 SPHERES Satellites 16

2.7.1 Fuel 16
2.7.2 Collision Avoidance 17
2.7.3 Code Size 17
2.7.4 Noise 18
2.7.5 Inter-satellite Communications 18

3 Game API 19

4 The Leaderboard 22
4.1 Introduction 22
4.2 Playing Matches 22
4.3 Standard play 22
4.4 Initial submission rule 23
4.5 Last day of the competition 23
4.6 Calculating Ratings 23
4.7 Summary 24

5 Tournament Structure 25
5.1 2D Practice Simulation Competition 25

Ver All-1.1 2

5.2 3D Simulation Competition 25
5.3 Alliance Formation Event 25
5.4 Semifinal Simulation Competition 27
5.5 ISS Final Competition 27

5.5.1 Overview and Objectives 28
5.5.2 Competition Format 28

5.5.2.1 Definition: Successful Match 29
5.5.2.2 Definition: Simulated Match 30
5.5.2.3 Scoring Matches 30

5.6 Virtual Finals Simulation Competition 30

6 Season Rules 31
6.1 Tournament Rules 31
6.2 Ethics Code 31

7 Revision History 32

Ver All-1.1 3

1 Game Overview
The game centers around finding the highest concentration Micro-organism Zone, collecting
Biological Samples by drilling, and delivering the samples to the Base Station, while avoiding
creating Geysers. Points are generated by drilling for biological samples and returning them to
the common base station. The playing field “surface” has been discretized into a matrix of 16x20
sample squares 0.08m on each side. All drilling within the area of a sample square is
considered as drilling for the same sample in the same square. The Game Overview figure,
below, shows an overview of the playing field.

Game Overview

Ver All-1.1 4

While the full playing field has a low concentration of microorganisms, there are two areas in the
playing field where the microorganism concentration in the ice is highest. The concentration
decreases with distance from these points. The location of the high-concentration area changes
randomly between each match.

To get points, the SPHERES satellite must be commanded to drill over a sample square, which
is done by rotating 90° about the Z axis of the playing field. The concentration of a sample
square can be obtained in three ways: (1) pick-up a portable analyzer and do remote analysis
without picking up a sample; (2) pick-up a portable analyzer and pick-up a sample, and analyze
it in-situ; or (3) pick-up a sample and deliver it to the Base Station where it will be automatically
analyzed. Successful delivery to the Base Station grants the most points.

Drilling a sample square weakens the surface of that square, creating an increasing probability
of activating a geyser on that square. The geysers will get activated if a sample square is drilled
four or more times. A geyser will push the SPHERE away from it, overriding any commanded
motion by the players’ code. A geyser activates for a limited period of time, but while it is active,
it will affect both satellites. A geyser hit will make the satellite drop the last sample it picked up.

A SPHERES satellite can carry at most five samples at one time. The samples may be
delivered to the Base Station or can be discarded anywhere in the playing field (when discarded
they are lost completely and cannot be picked up again) to free up sample spaces.

Matches of LIFE-SPHERES are played between two players, controlled by programs written by
two separate teams. Each team will compete to have the most points when the match time is
up. Each match lasts 180 seconds.

Ver All-1.1 5

2 Gameplay
In order to be victorious over the opposing team, each satellite should collect the most biological
samples, return them to the base station, and avoid geysers, all while managing their fuel, their
time, and their location on the gameplay area.

Note: Satellite position relative to all game features is determined by the location of the
center of the satellite as stored in the state variables (ZR state or SPHERES state) unless
indicated otherwise.

2.1 Playing Field
The playing field is determined by the size of the area available for the SPHERES satellites to
move inside the International Space Station. The simulation creates an interaction zone of the
same size. If players leave the Interaction Zone, they are considered out of bounds.

The Interaction Zone for the game has the following dimensions:

Interaction Zone Dimensions

 2D 3D Alliance
X [m] [-0.64 : +0.64] [-0.64 : +0.64] [-0.64 : +0.64]
Y [m] [-0.80 : +0.80] [-0.80 : +0.80] [-0.80 : +0.80]
Z [m] n/a [-0.64 : +0.64] [-0.64 : +0.64]

A player will be penalized a portion of its fuel allocation for every second it remains out of these
bounds.

For LIFE-SPHERES, the interaction playing field has been discretized into 0.08m squares (or
cubes for 3D play), creating a limited number of sample squares that can be drilled. The center
of all the squares is within the interaction zone, but the edges of the outermost sample squares
match the limits of the interaction zone. The sample square grid used for LIFE-SPHERES is
presented in the figure below:

Ver All-1.1 6

Playing Field Area and Interaction Zone Dimensions

The Z Axis has the same dimensions as the X Axis (+/- 0.64m) and is also divided into 16
sample squares. Note: the Z Axis is aligned in the same way as with the ISS: +Z points towards
Earth, which usually feels as “down”.

The function pos2square can be used to obtain the sample square index of the indicated
current location in meters, for example the location of the satellite obtained from the ZR State
Vector.

Ver All-1.1 7

The function square2pos returns the position, in meters, of the center of the indicated square
using the coordinated shown above.

2.1.1 Initial Position
The Blue and Red SPHERES satellites are deployed to the same initial position every game as
follows:

Initial Positions
 2D 3D Alliance

Blue
X [m] 0.2 0.2 0.2
Y [m] 0.2 0.2 0.2
Z [m] 0.0 0.0 0.0
Red
X [m] -0.2 -0.2 -0.2
Y [m] -0.2 -0.2 -0.2
Z [m] 0.0 0.0 0.0

The satellite radius is 0.11m.

2.2 Microorganism Zones
The center of the Microorganism Zones (100% concentration) is randomly generated within the
game grid for each match and may be located in any sample square except those in the
keep-out zones shown in the figure below of [X,Y] = [-2..2, -2..2] and [|X|,|Y|] = [7..8, 9..10] in
sample-square grid coordinates (see Section 2.1). The squares immediately next to the 100%
concentration have 60% and those two squares away have 30%. The rest of the grid has 10%.
The two 100% concentration zones will always be mirrored about the [X=0, Y=0] center of the
XY plane.

Section 2.2.1 details the Terrain Z geometry for the Alliance phase.

The figure below shows an example of a microorganism concentration zone at the start of a
match:

Ver All-1.1 8

Example Microorganism Concentration Zones (10=100%, 6=60%, 3=30%, 1=10%) and

Keep-out Area (pink) of 100% Concentration Sample Square.

Note: the outside corners of the 30% sample squares (yellow) may be either 10% or 30% based
on rounding differences during the zone allocation function.

The player will need to analyze the samples in order to figure out where the highest
concentration is during each match.

2.2.1 3D Terrain
The Alliance game does not have a flat microorganism surface, rather it is three dimensional.
The surface has randomly assigned heights for each square, at heights of Z = [0.40, 0.48, 0.56,

Ver All-1.1 9

0.64]m. The heights are restricted to these discrete values. The satellite must not crash onto the
surface in 3D. The figure below illustrates how crashing is defined in the game:

As illustrated, it is possible for the “sides” of the satellite to make contact with a surface, as long
as the “bottom” of the satellite does not make contact. Therefore, it is possible for the satellite to
go into a “valley” and drill successfully, as long as its “bottom” edge stays within the “valley” at
all times.

If a satellite crashes onto the 3D terrain, it will asses a 0.5 points/second penalty.

2.3 Biological Samples
There are three main steps to get points from a sample:

1. Drill
2. Analyze (optional)

a. If the analyzer has been picked-up, call analyzeTerrain immediately
b. If the analyzer has been picked-up, call getConcentrations as soon as a

sample is picked-up
c. If the player does not have an analyzer, take to Base Station to get concentration

after dropping the item
3. Drop at Base Station

The satellite has space for at most five (5) samples at one time. Once the sample spaces are
full, the satellite must drop the sample at either the Base Station to get points or anywhere in the

Ver All-1.1 10

field to discard the sample. If the sample is discarded, it cannot be picked up again by any
satellite, it is lost completely.

2.3.1 Drilling / Collecting Samples
In order to pick up a a sample, a SPHERES must complete a “drilling” motion. The drilling task
is started by calling startDrill with a translation speed less than 0.01m/s and rotation rate
of under 0.04rad/s (~2.3°/s) while the edge of the SPHERES satellite is within 0.04m of the
surface but does not crash onto the surface, with the satellite X Axis aligned within 11.25° of the
XY plane; the Y an Z axis of the satellite can be pointing in any direction. (Reminder: the
SPHERES satellite radius is 0.11m, see Section 2.1.1.) The figure below illustrates the required
start drill conditions:

Illustration of initial drilling conditions.

The drill must be stopped before calling startDrill (the function getDrillEnabled may
be used to check the status of the drill). After starting the drill, the satellite must rotate 90° about
the Z axis of the playing field. The satellite must remain at the same sample square where the
drill was started, maintaining a speed of under 0.01m/s, and maintaining the X Axis of the
satellite aligned within 11.25° of the XY plane. The figure below shows an example of the drilling
motion requirement:

Illustration of drilling rotation about the Z axis of hte playing field.

Ver All-1.1 11

The function checkSample can be used to determine when a sample is ready for pick-up.
Once the sample is ready, the function pickupSample is called to collect the sample. The drill
must be stopped by calling stopDrill before a new drill operation can start.

The satellite can hold at most five samples at any one time. The user can call
getSamplesHeld to obtain the status of each of the five sample spaces (true if full; false if
empty), or getNumSamplesHeld to obtain the total numbers of sample held at the time.

When a 100% concentration sample is picked-up, a bonus of 2.5 points is given every time.

The drill can be damaged if it is not used correctly by the following cases:

● Starting the drill when moving (translation or rotation) too fast (speed > 0.01m/s, rotation
rate > 0.04rad/s)

● Translating once the drill has started (moving out of the square where the drill was
started or gaining a speed > 0.01m/s)

● Not pointing the satellite X face along the XY plane (within 11.25°).

If the drill gets damaged, the player gets a point penalty. The function getDrillError can be
used for the player to determine if drill damage has occurred. To stop the damage penalty, the
drill must be disabled using stopDrill before starting again.

The number of drills performed at a sample square is incremented once a drill operation is
complete, whether the sample is picked-up or not. However, a geyser may activate only after a
sample has been picked up by calling pickupSample . (See Section 2.4.)

2.3.2 Sample Analyzers
The Sample Analyzers are always located as indicated in the table below:

Analyzer Positions

 2D 3D Alliance

Analyzer 0 X = 0.30m
Y = -0.48m

X = 0.30m
Y = -0.48m
Z = -0.16m

X = 0.30m
Y = -0.48m
Z = -0.16m

Analyzer 1 X = -0.30m
Y = 0.48m

X = -0.30m
Y = 0.48m
Z = -0.16m

X = -0.30m
Y = 0.48m
Z = -0.16m

The analyzers are not assigned to a specific satellite; one satellite may pick-up both analyzers,
although no direct benefit is gained from having both.

Ver All-1.1 12

The analyzers are automatically picked-up by stopping at the location of the analyzers within a
SPHERES satellite radius (0.11m) for 3 seconds with a translation velocity under 0.01m/s. The
function getAnalyzer indicates if the analyzers are available for pickup. The function
hasAnalyzer can be called to determine if the current player has picked up an analyzer.

These are portable remote analyzers, once the satellite has picked up an analyzer, it will be
able to conduct remote analysis of the sample square directly under the satellite and in-situ
analysis of any samples obtained, without having to go to the Base Station and without any
conditions to conduct an analysis.

Once an analyzer has been picked up, the functions analyzeTerrain and
getConcentrations become available.

analyzeTerrain can be called to obtain the concentration of the sample directly under the
satellite (based on the [X,Y] state of the satellite), as long as its speed is under 0.04m/s. The
function will return -1 if the analyzer has not been picked up and -2 if the speed is too fast. Note
that calling analyzeTerrain does not pick-up a sample, it only provides remote analysis of
the surface.

getConcentrations can be called in order to obtain the concentration information of any
samples held. The function will return -2 if a sample is empty, or -1 if the player has not picked
up an analyzer. If the player has picked up at least one analyzer, the function will reveal the
concentration of the samples.

2.3.3 Base Station
The Base Station is where the SPHERES must deposit the samples. The Base Station is a
circle of radius 0.24m centered at the origin. To deposit a sample, the SPHERES must be over
the Base Station, moving with a translational speed < 0.01m/s and a rotation rate < 0.04rad/s
(~2.3°/s) and the +X face of the satellite pointing in the -Z direction (within 11.25°). The function
atBaseStation may be called to determine if the satellite is ready for delivery.

To deliver the sample, the player needs to execute the dropSample command. If the satellite
is correctly positioned at the Base Station, the sample is delivered and the team will accumulate
points. The function will return the concentration of that sample if it is dropped correctly at the
Base Station. If the command is executed when the satellite is not correctly at the Base Station,
the SPHERES will lose the sample (the sample is discarded) and the function will return 0.0.

2.4 Geysers
When drilling, the probability of a geyser being activated in that square is , where D is the 64

D3

number of times that sample square has been drilled. The player may use the function

Ver All-1.1 13

getDrills to determine how many times a specific sample square has been drilled so far.
The resulting probability of starting a geyser when picking up a sample is as follows:

Geyser Probability

Drill # Probability of geyser activated

1 1/64 = 1.6%

2 8/64 = 12.5%

3 27/64 = 42.2%

4+ 64/64 = 100%

When a geyser is created, it imparts a force of F=0.2N (maximum SPHERES satellite actual
thrust) to any satellite that is within a SPHERES satellite radius (0.11m) of the sample square
center. The force imparted overrides all commands in the Z direction and pushes the satellite
towards -Z, without affecting the commanded X and Y motion. Note: the fuel used to move the
satellite due to geyser activity does count towards the player total fuel allocation (See Section
2.7.1). The force overrides user commands for 5 seconds.

Note: the geysers impart only forces and not torque, therefore they do not have an effect on the
attitude of the satellite.

If a satellite is hit by a geyser it will drop the “last” sample picked up at the location of the 1

geyser. The sample is discarded and lost completely immediately when the geyser hits.

A geyser goes off on the same iteration when the sample is picked up and remains active for 30
seconds. At most 8 geysers may be active at any one time (if 8 geysers are already active,
drilling operations will no longer create geysers).

The function getNumGeysers returns the number of active geysers. The function
getGeyserLocations returns a matrix with the [X,Y] sample square coordinates of any
active geysers. The matrix is not in any specific order (it depends on when and which player
activated the geyser); any index of the matrix may have an active geyser, otherwise an invalid
sample square coordinate [-100,-100] is returned. The function isGeyserHere may be called
to determine if a geyser is active at a specific location of interest to the player.

2.5 Scoring
Teams get points by:

1 The geyser will drop one of the samples picked-up at the location of the geyser, it will not necessarily be
the the highest sample number.

Ver All-1.1 14

● Drilling successfully
● Delivering a sample to the Base Station
● Picking up a 100% sample

Teams lose points by:
● Drilling incorrectly
● Causing a geyser too close to the Base Station
● Crashing into the 3D terrain

The functions getScore and getOtherScore can be used to compare the scores between
the players within the user code.

2.5.1 Drilling
Successful drilling a square and completing the sample pick-up (calling pickupSample) grants
the following points based on the number of times that specific sample square has been drilled
by any satellite:

Drill Attempt Points

1 1

2 2

3 3

4+ 0

2.5.2 Dropping Off Sample
Successfully dropping a sample at the base stations gives the following points:

5*C + 2 where C = concentration of the sample analyzed (%)

2.5.3 Picking Up a 100% Sample
When a team successfully picks up a sample with 100% concentration, 2.5 bonus points are
awarded immediately upon pick-up.

2.5.4 Incorrect Drilling
If the SPHERES drill is activated (by calling startDrill) and it violates the drilling conditions
(see Section 2.3.1), these improper drilling techniques will damage the drill. This is quantified
through a 0.25 point/second deduction while the drill is on (after startDrill is called and
before stopDrill is called).

Ver All-1.1 15

2.5.5 Geyser Too Close to Base Station
Creating a geyser close to the base station is very dangerous. Thus, any geyser created within
two grid squares of the center of the play area (where the Base Station is located, sample
squares [-2..2][-2..2]) will result in a 10 point deduction.

2.5.6 Crashing into 3D Terrain
When a satellite crashes into the 3D Terrain it will asses a 0.5 point/second penalty.

2.6 End of game
The game ends after 180 seconds. Whichever team has more points wins. In the unlikely case
of a tie, whoever picked up the most number of samples will win. If a further tie is needed, then
the team closest to the center of the base station at the end of the game will win.

2.7 SPHERES Satellites
Each team will write the software to command a SPHERES satellite to move in order to
complete the game tasks. A SPHERES satellite can move in all directions using its twelve
thrusters. The actual SPHERES satellites aboard the ISS, like any other spacecraft, have
limited fuel (in this case liquid carbon dioxide), power (in this case AA battery packs), and
computer (a digital-signal processor). These resources are limited and must be used wisely.
Therefore, the players of Zero Robotics are limited in the use of these resourced by virtual limits
within the game. The use of batteries is limited by having a fixed game time of 180 seconds.
The other limitations are detailed below.

The nominal properties of the SPHERES satellites are summarized as follows:

Property Value Units

Radius 0.11 m

Diameter 0.22 m

Mass 4.0 kg

Single Thruster Force 0.11 N

These are called nominal properties because they are not exact. The Mass changes up to 0.2kg
as fuel is consumed. The single thruster force is affected by how many thrusters are open at
one time, varying up to 20% of the nominal force. In addition, while every attempt was made to

Ver All-1.1 16

align the thrusters with the satellite body axes, there are imperfections in the alignment (within
2°), therefore not all the force goes in the exact desired direction.

2.7.1 Fuel
Each player is assigned a virtual fuel allocation of 60 seconds of total accumulated thruster
firing time. This is calculated by summing individual thruster firing during the game. Once the
allocation is consumed, the satellite will not respond to the player SPHERES control commands.
It will fire thrusters only to avoid leaving the Interaction Zone or colliding with the other satellite.

Any action that requires firing the thrusters (rotating, accelerating, decelerating), whether it was
commanded by the player, due to activate collision avoidance or out-of-bounds breaking, or
other penalties of the game play, will consume virtual fuel allocation.

The function getFuelRemaining can be called to obtain the fraction of fuel still available
during a match. The function returns 1.00 for a full tank, and then a fractional value (e.g. 0.50 =
half a tank) until reaching 0.0. Once the function returns 0.0 all user motion commands will be
ignored.

2.7.2 Collision Avoidance
The Zero Robotics game implements a Collision Avoidance algorithm, ultimately in order to
prevent actual contact between the satellites aboard ISS. The algorithm is also enabled in
simulation.

The algorithm activates for any satellite that is moving with a translational velocity higher than
0.01m/s. If a satellite is moving below 0.01m/s the algorithm will not affect that satellite. If the
algorithm detects an imminent collision between the satellites, it will overwrite the forces
commanded to the satellites by adding a force perpendicular to the vector between the center of
the satellites, with a magnitude proportional to the speed of the satellite. The direction of the
perpendicular force is undefined, except that it is always opposite between the two satellites.
The Collision Avoidance forces are illustrated in the figure below:

Ver All-1.1 17

Collision Avoidance Algorithm (not to scale)

Note: the fuel used in order to prevent collisions does count towards the total allocated fuel for
the satellite.

2.7.3 Code Size
A SPHERES satellite can fit a limited amount of code in its memory. Each project has a specific
code size allocation. When you compile your project with the “Code Size Estimate” menu option,
the compiler will provide the percentage of the code size allocation that your project is using.
Formal competition submissions require that your code size be 100% or less of the total
allocation.

2.7.4 Noise
It is important to note that although the two competitors in a match will always be performing the
same challenge and have identical satellites, the SPHERES simulations create noise similar to
that experienced by the satellites aboard the ISS. This noise means two main things:

● The satellites will never know exactly where they are; their “estimate” of their location
reflects that the sensors are not perfect, so at all times even if the satellite is supposed to
be completely still, their location will vary approximately ±0.005m independently on every
axis.

● The satellites will not thrust perfectly. While the thrusters use identical designs, each
thruster has a slight variation in thrust, and the total thrust varies by the number of
thrusters used at one time. This means that the thrust of the satellites may vary in
general 10% and up to 20% in some cases.

This is fully intended as part of the challenge and reflects uncertainties in real aerospace
engineering systems, which have imperfect dynamic models, sensors, and actuators. The best

Ver All-1.1 18

performing solutions will be those that prove to be robust to these variations and a wide variety
of different initial conditions of the gameplay features.

2.7.5 Inter-satellite Communications
The satellites have the ability to communicate with each other using binary messages. The API
functions sendMessage and receiveMessage may be used to send data between the
satellites if different players decide to collaborate during a game.

Ver All-1.1 19

3 Game API
The following table lists the functions available in this year’s game. In order to use these
functions, use the syntax game.functionName(inputs) , for example:

game.dropSample(1)

For the general Zero Robotics functions use the syntax api.functionName(inputs) , for
example:

api.setPositionTarget(posTarget)

(unless they are math functions, which can be called without reference to the instance).

The generic ZR user API (in both C and MATLAB languages) is available at:

http://static.zerorobotics.mit.edu/docs/tutorials/ZR_user_API_2017.pdf

LIFE-SPHERES API Reference

Name Description
C: void pos2square(float pos[3], int
square[3])

MATLAB: square = pos2square(pos)

Returns the sample square coordinates (see Section 2.1) for the
position pos[X,Y,Z] in meters (e.g., the ZR state).

C: void square2pos(int square[3],
float pos[3])

MATLAB: pos = square2pos(square)

Returns the position in meters of the center of the given sample
square (see Section 2.1).

C: float getTerrainHeight(float
pos[2])

MATLAB: result =
getTerrainHeightPos(pos)

Returns the height of the terrain surface (playing field Z axis value)
of the sample square at the given pos[X,Y] in meters.

C: float getTerrainHeight(int
square[2])

MATLAB: result =
getTerrainHeightSquare(square)

Returns the height of the terrain surface (playing field Z axis value)
of the sample square at location square[X,Y] (see section 2.1
for grid coordinates).

C: int hasAnalyzer()

MATLAB: result = hasAnalyzer()

Returns the number of Sample Analyzers held by the SPHERES:
 0 = no analyzers
 1 = has only analyzer 0
 2 = has only analyzer 1
 3 = has both analyzers 0 and 1

C: void getAnalyzer(bool pickedUp[2])

MATLAB: pickedUp = getAnalyzer()

Returns the status of the two analyzers in the boolean array
pickedUp:
 true if the analyzer has been picked up by either sat
 false if the analyzer has not been picked up

C: float analyzeTerrain()

MATLAB: result = analyzeTerrain()

Returns the concentration of the sample square directly below the
satellite (based on the satellite [X,Y] state), if the analyzer has
been picked up and the satellite is moving slow enough (<
0.04m/s):
 -2 = moving too fast
 -1 = analyzer not picked up
 float = concentration of sample square

Ver All-1.1 20

http://static.zerorobotics.mit.edu/docs/tutorials/ZR_user_API_2017.pdf

C: int getDrills(float pos[2])

MATLAB: result = getDrillsPos(pos)

Returns the total number of times drilling has been completed (sum
of drills by both satellites) in the square that contains the position
(e.g., from the satellite ZR state) indicated by the variable input
pos[X,Y] in meters. Note: even in 3D, only the [X,Y] coordinates
are used, since the samples are in the plane Z=0.48.

C: int getDrills(int square[2])

MATLAB: result =
getDrillsSquare(square)

Returns the total number of times drilling has been completed (sum
of drills by both satellites) in the square that contains the sample
square indicated by the variable input square[X,Y] (see Section
2.1 for grid coordinates). Note: even in 3D, only the [X,Y]
coordinates are used, since the samples are in the plane Z=0.48

C: bool startDrill()

MATLAB: result = startDrill()

Starts drilling the square under the current position of satellite.
Returns true if started successfully
 false if drilling incorrectly, point penalty may result

C: bool checkSample()

MATLAB: result = checkSample()

Returns true if the sample currently being drilled is ready for
pick-up. Returns false if the drill was not started or the drilling
motion requirements are not complete.

C: int pickupSample()

MATLAB: result = pickupSample()

Attempts to collect sample. Must be run while drill is running.
Returns index into sample array (sample #) if collected
 -1 if sample space is full
 -2 for incorrect drilling procedure / drill is off

C: void getSamplesHeld(bool
samples[5])

MATLAB: samples = getSamplesHeld()

Populates a list of booleans indicating whether a sample space has
been filled or is empty:
Returns true if a sample space is full (picked-up OK)
 false if a sample space is empty

C: int getNumSamplesHeld()

MATLAB: result = getNumSamplesHeld()

Returns the total number of samples held (0 = none, up to 5).

C: void getConcentrations(float
concentrations[5])

MATLAB: concentrations =
getConcentrations()

Returns the list of concentrations of each of the sample spaces
that have been analyzed:
Returns concentration of sample
 -1 if the sample has not been analyzed
 -2 if the sample is empty

C: float dropSample(int sampleNumber)

MATLAB: result = dropSample(sampleID)

Attempts to drop the specified sample (0, 1, 2, 3 or 4). If the
satellite meets the condition for a base station delivery and the
sample is not empty, the function returns the sample concentration.
If there is no sample, or the satellite is not at the base station, it
returns 0.
Returns concentration if dropped correctly at base
 0.0 if not dropped correctly or sample empty

C: bool atBaseStation()

MATLAB: result = atBaseStation()

Returns true if the satellite currently meets all the requirements to
drop a sample at the Base Station for points.

C: void stopDrill()

MATLAB: stopDrill()

Stops drilling and resets any drill errors if they occurred.

C: bool getDrillEnabled()

MATLAB: result = getDrillEnabled()

Returns true if the drill is currently enabled, false if it is disabled.

C: bool getDrillError()

MATLAB: result = getDrillError()

Returns true if a drill error has occurred since drillStart was
called and has not been reset by calling drillStop.

C: int getNumGeysers()

MATLAB: result = getNumGeysers()

Returns number of active geysers

Ver All-1.1 21

C: void getGeyserLocations(int
geyser[10][2])

MATLAB: geyser = getGeyserLocations()

Returns a matrix with the 2D sample square grid coordinates (see
section 2.1) of any active geysers. The location is set to [-100,
-100] for inactive geysers. Note: even in 3D, only the [X,Y]
coordinates are used, since the geysers cover the full Z axis.

C: bool isGeyserHere (float pos[2])

MATLAB: result = isGeyserHerePos(pos)

Returns true if there is a geyser in the sample square at location
pos[X,Y] in meters (e.g. from ZR state). Note: even in 3D, only
the [X,Y] coordinates are used, since the geysers cover the full Z
axis.

C: bool isGeyserHere (int square[2])

MATLAB: result =
isGeyserHereSquare(square)

Returns true if there is a geyser in the sample square at location
square[X,Y] (see section 2.1 for grid coordinates). Note: even in
3D, only the [X,Y] coordinates are used, since the geysers cover
the full Z axis.

C: float getScore()

MATLAB: myScore = getScore()

Returns player’s score

C: float getOtherScore()

MATLAB: otherScore = getOtherScore()

Returns opponent’s score

C: float getFuelRemaining()

MATLAB: fuel = getFuelRemaining()

Returns remaining fuel as a fraction of total fuel allowed (1.00 = full
tank; 0.50 = 50% remaining; 0.00 = empty tank).

C: void sendMessage(unsigned char
inputMsg)

MATLAB: sendMessage(inputMsg)

Sends inputMsg to other satellite

C: unsigned char receiveMessage()

MATLAB: msg = receiveMessage()

Returns the most recent message sent by other satellite

Ver All-1.1 22

4 The Leaderboard

4.1 Introduction
The Zero Robotics Leaderboard has adapted over the years, and is now based on the Whole
History Rating (WHR) system. The WHR approach tracks ratings throughout each phase of the
competition in order to rank players on the leaderboard. Rating is calculated based on the
probability of your team beating another team during a match (probability of wins and losses).
Scores from individual matches are not factored into the calculation. See the “Calculating
Ratings” section below for details.

The Leaderboard calculates ratings daily from the beginning of a competition until the
submission deadline. All matches during the competition period count toward the rating in the
competition. At the end of each competition phase, the final standings on the Leaderboard will
determine which teams advance to the next phase.

4.2 Playing Matches
Each day, at 21:59:59 UTC, (except on competition deadlines where posted times apply) your
most recently submitted code is collected by an automated system and played against other
teams submissions, as described in the section titled “Standard play” below. The “Standard
Play” cycle is repeated a total of five (5) times using the team placement from the previous cycle
as the starting point for the next cycle. Results are posted on the website after all five (5) cycles
have been completed. While the daily competition is ongoing the leaderboard will not be visible
and clicking on the Leaderboard will return the message: “Results will be posted once the daily
leaderboard run is complete”. Multiple “Standard play” cycles are completed for the following
reasons: 1) To settle or converge results daily. (This ensures a more accurate reflection of rank
for teams entering a competition leaderboard for the first time.) 2) To provide more match data
for teams at the top and bottom of the leaderboard since these teams play fewer matches
overall.

4.3 Standard play
As a default you will play the 9 teams above you and the 9 teams below you. If there are less
than 9 teams above you, you will play all teams above you plus the 9 below you. If there are
less than 9 teams below you, you will play all the teams below you and the 9 teams above you .
Teams are randomly assigned as Blue or Red SPHERES during each match.

Ver All-1.1 23

4.4 Initial submission rule
When your team first submits code to the competition you will play matches against the bottom

quarter of the teams already on the leaderboard. On the first day with submissions, those teams
will play as per “Standard Play”.

4.5 Last day of the competition
On the last day of the competition, the leaderboard will be run multiple times to converge/

stabilize the results: to calculate entry position of teams submitting for the first time and to
assess final placement of all teams.

4.6 Calculating Ratings
A team’s standing in a competition is determined by a value called rating. The Leaderboard
tracks all matches a team has played against other players in the course of the competition and
creates a rating based on the outcomes.

Your rating is the factor R0 in the equation for the probability of your team beating another payer
of rating R1 in a single match.

Probability(W) = eR0 / (eR0 + eR1)

The variable R0 is computed using an algorithm based on Bayesian inference. The probability
of a rank r given a series of game outcomes G is then:

P(r|G) = P(G|r)P(r) / P(G)

is the prior distribution of ratings, which is assumed to vary in a random walk process with a
standard deviation over each day of the competition of 0.1, chosen after testing for stability of
the board. This allows all previous ratings to change, as implied by the name Whole History
Rating. Ignoring P(G) because it is a normalizing constant with no effect of the final rating r, and
incorporating the standard deviation of ratings, having each day of the competition representing
k:

∏ P(r|G) = P(gk|rk)P(rk|rk-1)

The final term P(r 0) is set to 0.

The algorithm uses newton’s method to maximize this probability as a function of your rating.
The rating at this maximum is your new rating.

Ver All-1.1 24

4.7 Summary
Not all wins are equal. Wins and losses are valued by their relation to the projected win
probability. Your rating corresponds to a 50% win probability, meaning you are more than 50%
likely to win against teams with lower ratings than yours, but not against teams with higher
scores. Unexpected match results, either favorable or unfavorable, will leave the most
noticeable impacts on your rating.

Although this process is based on probability, it is wholly reliable. The rank computation
algorithm corrects errors in rank history throughout the competition, and optimization and
stabilization safeguards have been added to calculate rank with extreme precision. Also, the
leaderboard is designed to allow data to propagate throughout the system. If two players don’t
run against each other because their rank difference is more than 10 slots, overlapping matches
update both teams’ ratings. Every team’s rating is relative to all other ratings.

To summarize there are several factors that affect a team’s rating:

● Match Outcomes: A team that consistently wins matches will usually have a higher
rating.

● Opponent Rank Winning against a higher ranked team will usually improve a team’s
rating.

● Other Match Outcomes The Leaderboard takes into account all matches played by all
teams. Even if two teams do not have a direct encounter, their match outcomes will have
an effect as they filter through third parties.

The team with the highest rating will be rank 1 on the leaderboard. The best way to stabilize and
even improve your rank is the most logical way: keep working at your algorithms. There are no
surefire alternatives. Also, don’t let fear of a bad match ruining your team’s prospects keep you
from submitting early. Even though every submission is factored into your match history, results
of past competitions demonstrate that teams that make many submissions tend to perform
better.

Finally, it is important to note that after every competition phase, (2D, 3D, Alliance phase) all
ranking data is refreshed and teams start from scratch.

Ver All-1.1 25

5 Tournament Structure

5.1 2D Practice Simulation Competition
All teams that complete a valid registration are eligible to participate in the 2D practice
simulation competition.

Note: Several International teams from non-ISS nations may participate in the 2D and 3D
phases of the tournament, however, they will not continue into the alliance phase. These teams
will participate by invitation only.

5.2 3D Simulation Competition
All USA, Russian, and Australian teams that complete a valid registration and submit code that
achieves a nonzero score when competed against a “blank player” (a player with no code)
by the 2D practice competition deadline are eligible to participate in the 3D simulation
competition. However, only the 25 highest scoring teams from each ESA member state will
continue into the 3D phase.

When the 3D competition starts the game will be updated with new challenges and the
corresponding TBA values will be announced.

5.3 Alliance Formation Event
The top ranked 84 teams on the leaderboard at the end of 3D simulation play will form 28
alliances of three (3) teams each. The 28 alliances will work cooperatively to complete the
semifinals and, if not eliminated, the finals. Teams ranked below rank 84 will be invited to
participate in the Virtual Finals. See “Virtual Finals Simulation Competition” section below.

The ranking of the teams will be determined by the rankings at the close of the 3D leaderboard.

After the 3D leaderboard rankings are announced, advancing teams will have three days to
contact each other to discuss their alliance preferences. Any teams that do not wish to continue
in the Tournament will have the opportunity to cede their position to the next ranked team.

The Alliance Formation Event will take place on November 4th. The alliance formation event or
“draft day” is an online event during which teams will follow the alliance selection process
described below to invite other teams into alliance and/or accept their place within an alliance.
At least one representative from each team must participate in the online “draft day” event for

Ver All-1.1 26

the team to continue to the alliance phase. Additional details about the online “draft day” and
how to participate will be provided in advance of the event.

Due to the large number of teams involved, the draft will be split into two parts as shown in the
below figure. All teams ranked with odd numbers will participate in Draft part 1 and all teams
ranked with even numbers will participate in Draft part 2. Each draft will include 42 teams.

Division of Teams for the Drafts

Note: The times of the draft parts are To Be Announced

The alliance selection process will follow a serpentine pattern (illustrated in the Figure below):

● The highest ranked team selects their partner from any except the top 6 ranked teams in
their draft.

● The next highest ranked team selects their partner from any of the remaining teams
except the top 6 ranked teams in their draft

● 14 pairs are created in this manner
● A break takes place for the new pairs to discuss their selection for the 3rd alliance team
● The “lowest” ranked pair then selects their 3rd team from the remaining 14 teams
● The “2nd lowest” rank pair make the next selection
● Continue until all 14 alliances are formed.
● This process is duplicated in both draft events to end with a total of 28 alliances

Rule: No more than 2 of the teams in an alliance can be from the same continent.

Ver All-1.1 27

Alliance Creation Process demonstrated for teams with odd number rankings

(*The example shown above is approximate.)

5.4 Semifinal Simulation Competition
The 28 alliances created during the Alliance Formation Event will participate in the semifinal
simulation competition.

When the semifinal competition starts, the game will be updated with new challenges and the
corresponding TBA values will be announced. These new challenges are intended to be
substantial enough to require participation of all alliance teams in preparing competition
submissions.

5.5 ISS Final Competition
The top 14 alliances on the leaderboard at the end of semifinal play will advance to the ISS
Finals Competition. Alliances ranked below rank 14 will be invited to participate in the Virtual
Finals. See “Virtual Finals Simulation Competition” section below for details about the Virtual
Finals.

Ver All-1.1 28

The ISS finals will take place aboard the International Space Station with live transmission to
MIT. Teams will be invited to live broadcast events at MIT (US), an ESA location (EU), and at
University of Sydney (Australia).

5.5.1 Overview and Objectives
Running a live competition with robots in space presents a number of real world challenges that
factor into the rules of the competition. Among many items, the satellites use battery packs and
CO2 tanks that can be exhausted in the middle of a match, and the competition must fit in the
allocated time. This section establishes several guidelines the Zero Robotics team intends to
follow during the competition. Keep in mind that as in any refereed competition, additional real
time judgments may be required. Please respect these decisions and consider them final.

Above all, the final competition is a demonstration of all the hard work teams have put forward
to make it to the ISS. The ZR staff’s highest priority will be making sure every alliance has a
chance to run on the satellites. It is also expected that the competition will have several "Loss of
Signal" (LOS) periods where the live feed will be unavailable. We will attempt to make sure all
teams get to see a live match of their player, but finishing the competition will take priority.

To summarize, time priority will be allocated to:

1. Running all submissions aboard the ISS at least once
2. Completing the tournament bracket
3. Running all submissions during live video

We hope to complete the tournament using only results from matches run aboard the ISS, but
situations may arise that will force us to rely on other measures such as simulated matches.

5.5.2 Competition Format
The alliances will be divided into 2 conferences for the ISS competition. All teams ranked with
odd numbers will participate in Conference A; all teams ranked with even numbers will
participate in Conference B, as shown in this figure.

Division of Teams between Conferences

Each conference will include one “bye” team (alliances ranked #1 and #2 automatically advance
to the conference semifinals) and 2 brackets of 3 alliances each. Each bracket will play 3
matches in round-robin style: alliance A vs. B, B vs. C, and C vs. A.

After the round-robins are complete, there will be a winner of each bracket (shown as BR1, BR2
in the ISS Competition Bracket figure.) The following rules determine the winner:

Ver All-1.1 29

1. The alliance with the most wins advances
2. If alliances are tied for wins, the alliance with the highest total score advances
3. If scores are tied, simulation results will be used to break the tie

The semifinal match between the top 2 bracket winners and the “bye” team will also be played
in round-robin style. The winner of this match is determined in the same way as the bracket
winners:

1. The top 2 alliances with the most wins in their bracket, advance
2. If there is a tie for wins, the alliance(s) with the highest total score in their bracket

advance
3. If scores are tied, simulation results will be used to break the tie

The winning alliance from each conference will play a single match to determine the Zero
Robotics ISS Champion. The losing alliance will be awarded 2nd place.

ISS Competition Bracket

5.5.2.1 Definition: Successful Match
● Both satellites move correctly to initial positions
● Both satellites have normal motion throughout the test
● Both satellites return a valid score
● Neither satellite expends its CO2 tank during a test run

Ver All-1.1 30

5.5.2.2 Definition: Simulated Match
In advance of the competition, the ZR Team will run a simulated round robin competition
between all participating teams. The results from matches in this competition will be used in
place of ISS tests if necessary (see below.) The results of a simulated match will only be
announced if they are used in the live competition.

5.5.2.3 Scoring Matches
Scores in the scoring matches will be determined according to these rules:

Case 1: Successful Match, Both Satellites Return Unique Score (e.g. 130, 151)

● The scores will be recorded as the official score for the match.

Case 2: Either Satellite Returns an Invalid Score (e.g. 130, 255)

● If the first run of a match is not successful, the match will be rerun, time permitting.
● If the second run of a match is not successful, the results from a simulated match will be

used.

5.6 Virtual Finals Simulation Competition
All teams participating in the 3D competition that do not advance to the Semi Final competition
(Alliance Phase) and all teams participating in the Semi Final Competition that do not advance
to ISS Finals will be invited to participate in the Virtual Finals.

The Virtual Finals game will be identical to the Semi Final competition (Alliance Phase) game.
Teams participating in the Virtual Finals will submit to a Virtual Finals Leaderboard.

Teams may choose to participate in the Virtual Finals as individual teams or as alliances. Teams
that did not participate in the original alliance formation event are welcome to create alliances, if
desired. However, once a team/alliance submits code to the Virtual Finals Leaderboard the
team/alliance composition cannot be changed.

Once the Virtual Finals Leaderboard closes, the top ranked 2 teams/alliances will advance to
the Championship Match of the Virtual Finals. Time permitting, the final Championship Match of
the Virtual Finals competition will be competed aboard ISS during the ISS Finals.

Ver All-1.1 31

6 Season Rules

6.1 Tournament Rules
All participants in the Zero Robotics High School Tournament 2017 must abide by these
tournament rules:

● The Zero Robotics team (MIT / Aurora/ ILC) can use/reproduce/publish any submitted
code.

● In the event of a contradiction between the intent of the game and the behavior of the
game, MIT will clarify the rule and change the manual or code accordingly to keep the
intent.

● Teams are expected to report all bugs as soon as they are found.
● A “bug” is defined as a contradiction between the intent of the game and behavior of the

game.
○ The intent of the game shall override the behavior of any bugs up to code freeze.
○ Teams should report bugs through the online support tools. ZR reserves the right

to post any bug reports to the public forums (If necessary, ZR will work with the
submitting team to ensure that no team strategies are revealed).

● Code and manual freeze will be in effect 3 days before the submission deadline of a
competition.

● Within the code freeze period the code shall override all other materials, including the
manual and intent.

● There will be no bug fixes during the code freeze period. All bug fixes must take place
before the code freeze or after the competition.

● Game challenge additions and announcement of TBA values in the game manual may
be based on lessons learned from earlier parts of the tournament.

6.2 Ethics Code
● The ZR team will work diligently upon report of any unethical situation, on a case by

case basis.
● Teams are strongly encouraged to report bugs as soon as they are found; intentional

abuse of an unreported bug may be considered as unethical behavior.
● Teams shall not intentionally manipulate the scoring methods to change rankings.
● Teams shall not attempt to gain access to restricted ZR information.
● We encourage the use of public forums and allow the use of private methods for

communication.
● Vulgar or offensive language, harassment of other users, and intentional annoyances

are not permitted on the Zero Robotics website.
● Code submitted to a competition must be written only by students.

Ver All-1.1 32

● Players may not access the implementation instance of the game or modify any
variables of the object. In particular, the api and game objects should not be duplicated
or modified in any capacity.

● Simulation requests may only be done manually via the website interface, API calls for
simulation are not allowed (even if doable).

7 Revision History

Revision Date Changes Made By

2D-1.0 2017-09-09 Initial release for 2D game. ASO

3D-0.2 2017-09-18 Corrected Peak Zone in Page 4 example. ASO

3D-0.3 2017-09-27 Corrected description of peak concentration
keep out zones

ASO

3D-0.4 2017-09-28 Added section about Collision Avoidance ASO

3D-1.0 2017-09-29 Release of 3D game manual. ASO

3D-1.1 2017-10-13 Modifications for game balancing are
highlighted and include: increase sample
number from 3 to 5, increase base station
radius to .24m, modify Z location of planet
surface, and analyzers.

WRF,
MCA

3D-1.2 2017-10-20 Corrects error as highlighted in game
manual API.

WRF

All-1.0 2017-11-03 Initial release of Alliance version. ASO, DR

All-1.1 2017-11-08 Modified game play as follows:
- Picking up a 100% sample gives 2.5

bonus points upon pick-up.
- Getting hit by a geyser only drops

the “last” sample collected.
Corrected typo in section 2.3 list bullet a to
use analyzeTerrain function.

ASO

Ver All-1.1 33

